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Abstract
Data center traffic engineering (TE) routes flows over a set
of available paths following custom weight distributions to
achieve optimal load balancing or flow throughput. However,
as a result of hardware constraints, it is challenging, and often
impossible for larger data center networks, to precisely imple-
ment the TE weight distributions on the data plane switches.
The resulting precision loss in the TE implementation causes
load imbalances that can result in congestion and traffic loss.

Instead of treating all flows equally, we adapt the hardware
resource allocation to a flow’s traffic volume and its contribu-
tion to the overall precision loss. We intelligently prune select
ports in weight distributions and merge identical distributions
to free up hardware resources. Evaluation using realistic traffic
loads shows that our techniques approximate ideal TE solutions
under various scenarios within 7% error, compared to a 67% er-
ror for today’s state-of-the-art approach. In addition, our design
avoids traffic loss triggered by switch rule overflow. Finally,
the execution time is 10× faster than the current approach.

1 Introduction
Data center networks (DCNs) have resorted to using links with
abundant bandwidth, topologies with rich connectivity, and
operation at enormous scale to meet growing application needs.
However, these additional resources come at a significant
cost and DCN operation must ensure efficient utilization of
the network infrastructure. Traffic engineering (TE) plays a
critical role in addressing this efficiency need by routing traffic
over carefully chosen paths. Existing TE designs consist of
two parts: (1) calculating the optimal plan for mapping of flows
to links, which is called the TE solution; (2) implementing
the TE solution on data plane switches, which we call TE
implementation. Past TE research [3–5, 9, 22, 31, 38] has
mostly focused on the TE solution, but the TE implementation
impacts operational efficiency greatly and, despite this, has
received much less attention.

Equal-Cost Multi-Path (ECMP) [30] is the most widely
adopted method to implement TE solutions because of its
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universal hardware support. Weighted-Cost Multi-Path
(WCMP) [73] is an extension of ECMP that supports a
weighted split of traffic among paths by using forwarding table
entry replication. This enables finer-grained traffic control but
can consume much more space in the switch hardware table. As
a result, two problems occur. First, some groups (the data struc-
ture that implements weight distributions in the switch) used by
the TE solution cannot be installed in the switch after the switch
group table becomes full, leading to traffic loss. Second, if the
weights are adjusted to use less space in the group table, the
resulting TE implementation may have poor TE performance.
We refer to the difference between link utilization of the TE
solution and of the TE implementation as the precision loss.

Recently, spine-free DCN designs [7, 45, 46] propose to
replace the traditional Clos topology with clusters connected
as a full mesh. Spine-free design reduces the total cost of
ownership and accelerates DCN evolution, but we found that
they also increase usage on the group table, exacerbating
WCMP’s performance issues.

We seek to answer this question: how to implement TE solu-
tions with high precision given constrained hardware space?
Adjusting weight distributions of groups proves effective in
lowering table space requirement. However, when we com-
pared the groups retrieved from production switches with the
TE solution, we found that the precision loss is often high. We
analyzed the differences, which led to several insights on how
to reduce the group table usage with lower precision loss: (1)
Groups that serve significant traffic contribute disproportion-
ally to the precision loss. They should be given more group
table space. (2) Some groups have very skewed weight distribu-
tions and consume many table entries. Normal weight adjust-
ment that preserves all paths struggles to avoid high precision
loss. However, certain paths can be pruned from the distribu-
tion to significantly lower the table space requirement, often
with little impact on precision loss. (3) After adjusting weights,
some groups can become identical. Deduplicating such groups
frees up group table space without incurring precision loss.

We develop three heuristics based on the insights: (1) traffic-
aware resource allocation, (2) prune paths, and (3) deduplica-

1



tion. We then implement two algorithms that map TE solutions
to switch hardware, applying the above heuristics. They
both aim to minimize precision loss while adjusting group
weights to meet the hardware resource constraint. Heuristic
2 is invoked conditionally when the resource constraint is
otherwise impossible to satisfy. The two algorithms make
different tradeoffs: one has very low precision loss, while the
other runs faster but with higher precision loss in some cases.

Since evaluation in production DCNs could impact user
traffic, we built a data center TE evaluation framework named
FabricEval that allows us to run controlled experiments
using production-like DCN topologies and traffic loads.
Our implementations of the algorithms are compared to the
state-of-the-art approach [73] under both common and extreme
DCN configurations. Results show that our design implements
TE solutions with no more than 7% precision loss, while using
the state-of-the-art approach can have up to 67% precision
loss. Furthermore, our design achieves a 10× execution speed
improvement over the existing approach and successfully
avoids traffic loss triggered by exhausted hardware resources.

In summary, this paper makes the following contributions:
• We quantify the TE precision loss problem for a variety

of DCN topologies, scale, and traffic patterns. Our study
identifies five root causes of precision loss (§3).

• We present two algorithms with different speed and
optimality tradeoffs that can generate high precision
TE implementations, at the same time complying with
hardware resource constraints (§4).

• We develop a TE evaluation framework that mirrors
Google’s production DCNs and TE system and use it to
evaluate our design (§5).

• We release the source code of our algorithm implemen-
tation and the evaluation framework FabricEval [1].

2 Background
We provide an overview of how data center traffic engineering
systems are designed, as well as the hardware resource con-
straint these systems face. We then describe how the emerging
spine-free DCN architecture differs from the traditional
Clos-based design from a traffic engineering perspective.

2.1 Traffic engineering in data center networks
End hosts in DCNs are densely connected by many paths
traversing different switches. The TE system acts as a
centralized controller that manages all links/switches and
routes traffic end-to-end via available paths. It looks for an
optimal plan to fulfill a list of goals, including serving all
traffic demands (bytes to send between each src-dst pair),
maximizing flow throughput, balancing link loads etc. The
TE problem is typically formulated as a multi-commodity
flow (MCF) optimization problem. Though it is theoretically
possible to obtain a TE solution by solving an MCF with
comprehensive constraints, e.g., switch group table size limits,
the scale of today’s DCNs makes this approach prohibitively

Egress
port

p1
p2…
p2

LPM/Flow
10.1.0.0/24

10.0.2.9/30
10.0.3.0/24

Group
ID

G1

G3

p1…
p1
p2…
p2

x85

x68

G2

p1…
p1
p2…
p2

x50

x40

x15

G’1,2

p1…
p1
p2…
p2

x5

x4

p1
p2…
p2

G3 x15

G’’1,2
p1
p2

p2G’3

Pre-reduction Reduction w/o 
precision loss

Reduction w/ 
precision loss

Figure 1: Hardware representation of flows/groups, and a
demonstration of group reduction.

expensive. Common TE systems break the task into two steps:
first generate a TE solution to the MCF problem without
hardware constraints, and then map the TE solution to a data
plane TE implementation. Some TE systems generate solutions
hierarchically [18] for better scalability, but this does not
impact the TE implementation step—the focus of this paper.

The TE solution specifies for each demand which paths to
use and how much traffic to place on each path. When paths
diverge at a switch, the demand is split by a ratio (weight
distribution) according to the routing decision. The TE system
updates each switch along the paths to reflect the routing
decision. To map the TE solution to a TE implementation,
the end-to-end TE solution first needs to be broken down into
switch-local routing decisions. Next, switch-local decisions
are translated to switch rules, namely longest prefix match
(LPM) entries and groups, and installed on switches using
switch control plane APIs (e.g., OpenFlow/SDN [44]).

An LPM/flow entry points to a group that is used for packet
forwarding (see the pre-reduction phase in Figure 1). A group
consists of a set of ports, each with an integer weight reflecting
the rounded fractional traffic volumes assigned to each path.
Weight distributions are achieved via port/entry replication
since all entries in a group are selected by uniform hashing
with equal probability at runtime. When ECMP is used, each
port in a group uses exactly one entry in the group table,
which is very efficient. With WCMP, the entries a port uses
is proportional to its weight in the group. It is easy to see that
the number of entries needed depends strongly on the weight
ratios, e.g., G1={p1:85;p2:68} will require a lot of entries.

The group table space is a scarce resource. Table 1 lists
the group table capacity of a few types of switches found in
production DCNs (also called fabric). Given the large number
of flows, and the use of WCMP in today’s DCNs, it is hard to
avoid exhausting the group table. A group reduction algorithm
is needed to reduce group sizes—the sum of entries used by
each group—so the TE solution fits in the group tables. The
group reduction algorithm should generate a new weight distri-
bution that closely approximates the original one. For example
in Figure 1, groups G1-G3 can be reduced to G′

1,2 and G′
3 with
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Table 1: Switch hardware profile of an example deployment.
Switch generation Port speed Group table size
Gen. 1 40 Gbps 4096 entries
Gen. 2 100 Gbps 16384 entries
Gen. 3 200 Gbps 32768 entries
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Figure 2: Traditional Clos and spine-free DCN topology. A
path segment is an abstraction of parallel physical links.

minimal precision loss, while lowering table usage from 259 to
10 entries (more details given in §3 and §4). The state-of-the-art
group reduction algorithm is called WCMP TableFitting [73].

2.2 Spine-free data center networks
Until recently, DCNs have used a traditional Clos topology
that connects clusters to a spine layer, as illustrated in Figure 2
(top left). Inside each cluster, a non-blocking tree topology
connects a large number of hosts. In this paper, we consider
a 3-stage cluster layout, as illustrated in Figure 2 (right). Stage
1 (S1) switches are also called ToR switches. Stage 2 (S2) and
stage 3 (S3) switches are aggregation switches. The S2 and
S3 switches in each cluster also form an aggregation block.

Clos DCNs can use all links leaving a cluster to reach
another cluster (assuming no failure) because they belong
to the same shortest path. For example, for cluster 1 to reach
cluster N in the traditional Clos DCN in Figure 2, there is only
one shortest path: 1⃝→ 2⃝ through the spine. The spine is often
the link speed bottleneck of all paths because of infrequent
upgrades. TE in Clos DCNs is thus straightforward, with all
links running at the same speed after speed auto-negotiation,
flows are spread across links in the shortest path in the form
of either ECMP or very simple weight distributions (e.g., due
to asymmetric link striping or some out-of-service links). In
a cluster with egress demands, each switch has one flow entry
matching the aggregated IP prefix of each destination cluster.
Every flow references an individual group that contains ports
used for reaching the next-stage switches, e.g., S1→S2 and
so on1. Groups on S3 switches contain ports to the spine.

The spine layer is expensive and requires frequent upgrades
to keep up with the growing traffic demand. To overcome this

1A small, constant number of static flows/groups are installed on each
switch to handle intra-cluster and ingress (destination) traffic. They are not
an important factor in the discussion of this paper, hence ignored.

cost disadvantage, DCNs are moving to a spine-free topology
enabled by optical circuit switching [64] that directly connects
the clusters using a full mesh, as illustrated in Figure 2 (bottom
left). Note that the intra-cluster topology and number of links
coming out of a cluster remain the same.

TE in spine-free DCNs is different and more challenging
to implement than in Clos DCNs in two ways. First, link
speed differences hidden by the slow spine layer are now
exposed. This translates to more skewed weight distributions
in groups, which consume more hardware resources. Second,
spine-free DCNs have far fewer direct-connect links in the
shortest path between clusters. In order to support high traffic
volumes, non-shortest-path forwarding must be adopted to
utilize all links. In the spine-free DCN of Figure 2, cluster 1
can reach cluster N via the direct path 3⃝, as well as multiple
indirect paths such as 4⃝→ 5⃝ through cluster 2. However,
graph theory shows that longer paths lead to higher bandwidth
overhead and lower flow throughput [61]. Therefore, the
length of non-shortest paths is limited to two hops, i.e., a flow
can transit through at most one intermediate cluster to reach
the destination. We term these two types of paths direct and
indirect paths. In practice, TE avoids using all indirect paths
simultaneously since this leads to a Valiant Load Balancing
(VLB) scheme [72] with higher link loads, although VLB does
reduce the group table footprint. The benefits of combining
VLB with WCMP are left for future work.

For both direct and indirect paths, switches of the source
cluster need to install flows and groups the same way as in Clos
DCNs. We call these src-typed flows/groups. In addition,
the intermediate cluster in an indirect path uses separate
transit-typed flows/groups to forward traffic from source
clusters to the final destination. Indirect-path traffic only
traverses the aggregation block. transit flows are installed
on all S2/S3 (but S1) switches to match on the source and
destination prefixes. Corresponding transit groups reflect
indirect-path traffic in the direction of S3→S2→S3.

3 TE precision loss challenges
To illustrate the pressure on group tables, Figure 3a shows
the group table utilization on Google’s production spine-free
fabrics. We see that group table usage can be as high as 90-
100%. However, high table usage does not directly represent
the negative impact on traffic. The key network-level metrics
are the traffic load and loss on each link. We observed that
high table usage strongly correlates with high link utilization.
For example, Figure 3b shows the actual link utilization
in a spine-free fabric in which the TE implementation
produces a max table utilization of 90%. We see that the
TE implementation results in a much more imbalanced link
utilization distribution compared to the (ideal) TE solution.
Moreover, 15% of the links exceed the max link utilization.
The worst few links see an actual utilization 5 times higher than
that of the TE solution, resulting in congestion loss. Figure 3c
shows that a Clos fabric of similar scale also experiences
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the spine-free fabrics. (c) Normalized link utilization CDF in a traditional Clos fabric of scale similar to the fabric in (b).

A B

C D

100G links x4

1G
60G

300G

400G
(a)

F

E
p1

p1 p2
G

p1 p2

p2
50G

50G0G
100G

0G

0G

25G

25G

25G

25G0G

100G

(b)

Figure 4: (a) Abstract view of a small spine-free network.
(b) Cascading precision loss in a 2-stage aggregation block.
Desired traffic is in dashed blue, actual traffic is in solid red.

precision loss due to group table constraints, although the
problem is less severe. We focus our discussion on a spine-free
TE setting, though our findings also apply to Clos DCNs.

We compared a large number of TE solutions and their result
and identified five key challenges that exacerbate precision
loss: (1) Large network scale leads to more groups sharing
hardware resources; (2) TE solutions are generated without
considering hardware constraints and often contain skewed
weights that are difficult to reduce; (3) Heterogeneous DCN
hardware subjects parts of the network to higher precision loss;
(4) Diverse paths in spine-free TE result in larger group sizes;
and (5) The cascading impact of errors in one stage to the next
in multi-stage DCNs increases precision loss multiplicatively.
We now explain these challenges in detail.

1⃝ Scalability challenge. The total number of flows/groups
to install on a switch increases with the number of clusters
because each cluster has demands for virtually all clusters. As
the number of groups in a table increases, each group has to
use fewer entries, resulting in higher precision loss overall.

Considering the Clos and spine-free DCNs in Figure 2,
hosts in each cluster are usually assigned continuous IP
addresses that aggregate into a single prefix. The number
of distinct prefixes equals the number of clusters N. In Clos
DCNs, each switch needs to support N-1 src flows/groups,
one for each destination cluster. In spine-free DCNs, each
switch not only has N-1 src groups, but also one transit

group for each indirect path traversing it. In the worst case,
a cluster can be used by all (N-2) source clusters to reach (N-1)
destination clusters indirectly. This sums up to (N-1)(N-2)
transit groups on each aggregation switch.

2⃝ Skewed weights challenge. Since the TE system is not

aware of any hardware resource constraint, the TE solution
it generates may include highly skewed traffic distributions.
Consider the example in Figure 4a, demand C→B has a total
volume of 61G. The TE solution assigns 1G to path C→D→B
and 60G to path C→B—a rather skewed split because path
C→A→B has no slack capacity left and at least two paths
must be used for diversity. Aggregation blocks A, B, C, and
D each has four physical S3 switches. The four switches in
each block are connected pair-wise (via four links) to the
four switches in each of the other blocks. As a result, the src
group for demand C→B on the S3 switches in C has a weight
distribution of 0.25:15, which is rounded to 1:15.

Demand C→B experiences precision loss for two reasons.
First, rounding weights to integer as required by the hardware
triggers precision loss. We could also use 1 : 60, but this
increases the group size. Second, if we cannot afford 16
entries, we can reduce the larger weight while retaining
all member ports in the group, which is a common group
reduction behavior. However, this further increases precision
loss and leads to oversub(scription) on link C→D. In the worst
case, 1 :15 is reduced to 1:1 (ECMP), resulting in an oversub
of actual volume

desired volume = 1/2·(0.25+15)
0.25 =30.5 times more traffic on link

C→D. Alternatively, precision loss can be lowered if certain
ports are removed from the group. We discuss this option as
a heuristic in §4.

3⃝ Heterogeneity challenge. Cloud data centers are
expanded incrementally to deal with growing traffic demand.
Newly installed clusters are always equipped with the
latest generation switch hardware, which means different
generations of hardware co-exist in the DCN. Switches differ
in link speeds and group table sizes, as demonstrated in Table 1.
This heterogeneity aggravates precision loss in two ways: (1)
The smaller table size of older switches forces groups to be
reduced more heavily; (2) Mixed link speeds make group sizes
larger on newer generation switches.

Gen. 3 switches have bandwidth 5× higher than Gen. 1
switches, but group table size is 8× larger. This means newer
switches can support more groups with less group reduction
if flow/group counts scale with bandwidth; however, older
switches may will struggle to store the necessary state.

In spine-free DCNs, a switch can see multiple speeds
across its ports since they may peer with switches of different
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generations. The TE system seeks to balance link loads by
placing more traffic on links with higher speed. A switch with
mixed link speeds (e.g. Gen 3 switches with connections to
slower hardware) increases the skew of group weights. This is
defined as the max-to-min weight ratio of a group. The larger
the ratio, the more skewed a group is. Our experiments (§5.4)
show that in a baseline spine-free topology, the average skew
ratio on Gen. 1 switches, which don’t suffer from this issue, is
484 and the max ratio is 1176. In contrast, for Gen. 3 switches,
the average ratio is 1187 and the max ratio is 2676.

4⃝ Path diversity challenge. Group pruning can result in a
significant reduction of path diversity which may result in high
link utilization when there are traffic shifts or link failures. [52]
proposes a technique that accounts for potential demand shifts
by imposing a minimum level of path diversity for each flow.
We incorporate this technique as a path diversity constraint into
our MCF formulation2 that generates TE solutions. With this
constraint, TE solutions must use at least a certain percentage
of the available paths to serve each demand. This percentage
is referred to as the spread. While this constraint makes the
TE solution more resilient, it degrades the solution optimality.

We compared the TE solutions generated by the MCF
without and with a path diversity constraint for the same
traffic load. Findings suggest that the standard formulation
tends to use as few paths as possible. Many groups in the
standard solution contain only one member port because the
demand is small enough to fit onto one path. These groups
use only one entry in the group table. Solution to the modified
formulation uses several paths as the diversity constraint
mandates. With a spread=50%, flows use more paths, which
increases the pressure on the group table. As mentioned in the
Heterogeneity challenge, larger groups will be reduced more
heavily to fit into the same table space, hence causing high
precision loss. We present a quantitative study in §5.3.

5⃝ Cascading precision loss challenge. The multi-stage
DCN topology has a cascading effect that amplifies precision
loss multiplicatively as traffic flows from upstream switches
to downstream switches.

To understand the cascading effect, consider the example in
Figure 4b. Switches E, F and G form a 2-stage topology inside
an aggregation block. A demand of 100G needs to be sent out
from switch F and G. The TE solution (illustrated in dashed
blue) divides the demand uniformly on upstream (S2) switch
E, i.e., it sends 50G to both F and G. Next, downstream (S3)
switches F and G each uniformly split the traffic between their
two ports. However, to conserve group table entries, the TE
implementation places all 100G on link E→G (shown in solid
red) while switch F receives zero traffic. The oversub of link
E→G is 2, while the undersub of link E→F is 0. This oversub-
/undersub is inherited by the downstream links on switches F
and G. The two ports on switch F are undersubscribed with
zero traffic, regardless of the groups installed on F. On the other

2§A.1 details the formulation. Equation 2f is the path diversity constraint.

hand, even if switch G implements a perfect ECMP group, port
G-p1 and G-p2 will each carry 50G, which yields an oversub of
2. This is the baseline precision loss inherited from switch E.

This example only shows the cascading precision loss inside
one aggregation block. For indirect paths, the aggregation
block of intermediate clusters inherits the baseline precision
loss from the upstream aggregation block in source clusters.

4 Design
We now present two algorithms that lower the TE precision
loss compared to current group reduction solutions. Our
algorithms, called Direct Mixed-Integer Reduction (DMIR)
and Iterative Greedy Reduction (IGR), aim to convert a set
of original input groups to weight-reduced output groups
so that the sum of the group sizes does not exceed hardware
limit. DMIR builds on top of mixed-integer programming
(MIP) to approximate groups to the TE solution. Specifically,
it uses an MIP solver (e.g., Gurobi [24]) to directly find the
optimal weight assignment for each group. Since MIP-based
solutions have exponential time complexity, we also develop
IGR which greedily searches for the smallest-sized groups that
best approximate the TE solution in polynomial time. IGR is
similar to WCMP TableFitting but uses additional heuristics.

Both algorithms achieve group reduction by decreasing
group weights relatively. They also use three heuristics to
deal with challenging scenarios (§3) in the reduction process.
We first describe the heuristics in §4.1 and then introduce the
algorithms in §4.2 and §4.3.

4.1 Shared heuristics
The heuristics described next are used in both algorithms.
The first two, Group Sharing and Group Pruning, directly
reduce the number of entries used in the group table. The third
heuristic, Table Carving, ensures that high-volume flows have
sufficient group entries to accurately distribute traffic.

Group Sharing. Group table usage depends on both the
number of groups and the number of entries per group. As the
network size increases, the number of groups to install on a
switch increases, requiring more hardware resources (see §3
Scalability challenge). This heuristic reduces the number of
groups by eliminating duplicates. Two groups are identical
if they use the same ports and weights for each port. While
src and transit flows/groups must be kept isolated by a
design requirement, flows of the same type can share the
same group entries to distribute their traffic. This optimization
does not incur any penalty, since it does not change the traffic
distribution. For example, G1 and G2 in Figure 1 can be
reduced to the same G′

1,2, which is shared by the two flows.
We find that while src groups generally differ, transit

groups often become identical after group reduction. For
instance, the TE solution in Figure 4a leverages both direct
and indirect paths to fulfill demands A→B and C→B. Two
transit groups are installed on switches of aggregation block
D, one for path C→D→B and one for path A→D→B. Since
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D→B is a common segment, the same ports are used in both
transit groups. The two groups only differ in pre-reduction
port weights. Considering any S3 switch in D, it only has
one port connected to B, as explained in the Skewed Weights
challenge. The transit group for C→D→B places 0.25G
on this port while the transit group for A→D→B puts 75G
on it. Both groups can be reduced to single-port ECMP groups
with weight 1, so they become identical. Generally speaking,
transit groups for indirect paths with a common segment
are identical post-reduction.

In production DCNs, groups are reduced batch by batch
as the TE system generates new groups in response to the
ever-changing network conditions. Since Group Sharing itself
does not incur TE precision loss, it should always be invoked
to conclude a round of reduction. The saved table space can
subsequently benefit the next batch.

Group Pruning. Sometimes not all groups in the TE so-
lution fit in the table, even if they are reduced to ECMP. In this
case, some groups are not installed, and their corresponding
traffic is dropped by the switch. Barring this heuristic, group
reduction algorithms do not proactively reduce groups beyond
ECMP because they aim to preserve the path diversity. But
as a last resort to avoid dropping traffic, our algorithms invoke
this Group Pruning heuristic that prunes ports from groups.

The key question is which port to prune. There exist
multiple victim selection policies, e.g., prune the first port
or a random port. The strategies are easy to implement, but
they are not necessarily good choices. For example, a port
carrying 90% of the group traffic might be pruned, impacting
precision loss significantly. Our pruning policy considers
both group size reduction (which impacts the path diversity
of the group) and the increase in precision loss. Similar to
WCMP TableFitting, our goal is to limit the max port oversub
in a group. For IGR, we prune the port that results in the least
increase in max oversub across all member ports, i.e., the port
with the smallest weight (traffic volume). For example, p1 in
G3 of Figure 1 can be pruned—the size of pruned G′

3 becomes
one, while the remaining p2 is merely oversubscribed by
1.016×. As discussed later in §4.2, the best port to prune in
DMIR is not always the one with the smallest weight, but
rather the port that yields the optimal objective.

We expect Group Pruning to be especially useful in
addressing the Skewed Weights and Heterogeneity challenges.
The reason is that both challenges lead to small weights
on some ports, which can be pruned with minimal impact
on precision loss. Our evaluation in §5.8 shows that Group
Pruning has very little impact on path diversity.

Table Carving. This heuristic addresses the Path Diversity
and Cascading Precision Loss challenges. Groups are forced
to use more egress ports to satisfy the path diversity constraint.
This means groups used by flows with a low traffic volume
may have a lot of non-zero weights and large sizes, even
though their contribution to the overall precision loss is more
limited than high-volume groups. We develop Table Carving

Algorithm 1 DMIR({Gi}, T ), 1≤ i≤ n. {Gi} is a set of src
or transit groups. T is the available table space.

1: // Step 1: Table Carving.
2: for i=1 to n by 1 do
3: Ti=MAX(len(Gi),

⌊
SUM(Gi)

∑iSUM(Gi)
·(T−∑ilen(Gi))

⌋
)

4: // Step 2: single-group optimization.
5: {G′

i}={Gi}
6: for i=1 to n by 1 do
7: G′

i=SINGLEGROUPMIP(Gi,Ti) // Equation 1.
8: // Step 3: reclaim and redistribution.
9: for G′

i=G′
1,...,G

′
n∈SORT({G′

i}) do
10: unused=RECLAIMUNUSED({G′

i})
11: if unused>0 then
12: G′

i=SINGLEGROUPMIP(Gi,Ti+unused)
13: // Step 4: Group Sharing.
14: return DEDUP({G′

i})

to ensure high-volume groups are prioritized over others and
can receive sufficient resources during group reduction.

Table Carving allocates table entries exclusively to each
group. A minimum number of entries are allocated per-group
to avoid that low-volume groups end up with too few entries
and little path diversity. Remaining entries are allocated to
groups in proportion to their traffic volume. Note, a group will
receive an allocation at least equal to the number of entries
required by its ECMP form. Some low-volume groups are
likely to be reduced to ECMP (or even get pruned) if they are
only allocated ECMP-sized entries. Nevertheless, the mini-
mum allocation is a tradeoff between protecting high-volume
groups and avoiding starving low-volume groups.

While G′
1,2 in Figure 1 can be pruned to G′′

1,2 to further
reduce table usage without hurting path diversity, reducing G3
to G′

3 is preferred because it carries less traffic. In addition to
the Path Diversity challenge, this heuristic also helps address
Cascading Precision Loss. Protecting the high-volume groups
in the upstream switches through Table Carving effectively
limits the baseline precision loss on the downstream switches.

4.2 Direct mixed-integer reduction
DMIR is a parallel group reduction algorithm. For a given set
of input groups, DMIR performs a reduction on each group
individually while ensuring the overall resource constraint
is not violated. Algorithm 1 presents the structure of DMIR.
Reduction happens in four steps: (1) The Table Carving
heuristic allocates table space T to each group (line 2-3). (2)
DMIR instantiates a number of single-group MIP optimization
problems (described below) and solves them in parallel to get
final reduced groups (line 5-7). (3) Table entries unused by
reduced groups are reclaimed (line 10) and redistributed to
other groups, potentially allowing precision improvements
over that of the original allocation (line 12). (4) Final groups
are deduplicated using the Group Sharing heuristic (line 14).
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Algorithm 2 IGR({Gi}, T ), 1≤ i≤n.

1: // Step 1: Table Carving, see Algorithm 1
2: // Step 2: single-group reduction.
3: θ=1.00 // oversub limit.
4: {G′

i}=SORT({Gi}) // sort by descending group size.
5: while SUM({G′

i})>T or SUM(G′
i)>Ti,∃i do

6: for i=1 to n by 1 do
7: G′

i=REDUCESINGLEGROUP(SORT(Gi),Ti,θ)
8: if SUM({G′

i})≤T and SUM(G′
i)≤Ti,∀i then

9: return DEDUP({G′
i})

10: θ += 0.05
11: PRUNEGROUPIFSTUCK(Gi_not_ f it)
12: // Step 3: Group Sharing.
13: return DEDUP({G′

i})
14: function REDUCESINGLEGROUP(G={wi}, Ti, θ)
15: G′∗=G′={w′

i}=(1...1) // G′∗: optimal G′.
16: oversubmin=∞

17: for w′
1=1 to wmax=

⌈
w1·Ti

SUM(G)

⌉
by

⌈wmax
IT ER

⌉
do

18: for i=2 to p by 1 do
19: w′

i=
⌈

w′
1

w1
·wi

⌉
20: oversub = MAXPORTOVERSUB(G, G′)
21: if oversub<oversubmin then
22: UPDATE(oversubmin=oversub,G′∗=G′)
23: if SUM(G′)>Ti or oversubmin≤θ then
24: break
25: return G′∗

The objective of single-group MIP optimization is to
minimize the difference between an original group G and the
reduced group G′ such that G′ uses no more than its allocated
resources. Equation 1 is the single-group MIP formulation. wi
and w′

i are port weights of groups G and G′. p is the number of
ports on the switch. TG is the allocated table entries for group
G′. The formulation treats G and G′ as two p-dimensional
vectors such that G=(w1,w2,···,wp) and G′=(w′

1,w
′
2,···,w′

p).
This brings G and G′ into the same vector space Rp for
convenient comparison. Note that this formulation also
organically integrates Group Pruning with the common path-
diversity-preserving reduction behavior by allowing w′

i to be 0.

minimize
p

∑
i=1

∣∣∣∣ wi

∑
p
i=1wi

− w′
i

∑
p
i=1w′

i

∣∣∣∣
s.t.

p

∑
i=1

w′
i≤TG

w′
i∈Z+,∀i∈{1,...,p}

(1)

The difference between G and G′ can be measured by
various metrics, such as cosine similarity, L1-norm, Kullback-
Leibler divergence etc. We choose L1-norm ||G−G′||1 since
finding the best G′ is a combinatorial optimization problem
and L1-norm’s linearity makes it computationally tractable.
This metric is different from that used by WCMP TableFitting

and IGR: restricting the max port oversub of a group. While
restricting max port oversub is an intuitive objective—as long
as none of the ports exceeds the oversub limit, the overall
precision loss is bounded—subjecting all ports to the same
oversub limit does not always produce the optimal group
reduction outcome (as seen in the Skewed Weights challenge).

An alternative to single-group MIP is directly solving all
groups in a monolithic formulation3. This is nevertheless
infeasible because with so many decision variables and
constraints, it takes the solver more than days to find a solution.

In the third step, DMIR collects the unused entries from
each group after reduction. This is in order to make further
improvements on some groups by rerunning reduction with
extra hardware resources. Some groups have unused entries
because these entries do not significantly improve the solution
quality, so we reclaim them for other groups as follows. After
the initial reduction, we sort groups by their objective metric
(line 9). The group with the largest difference from its original
group is ranked on top. All the unused entries are allocated
to the top group, and group reduction is rerun with the larger
space limit. It is possible that the top group only consumes
a few or none of the unused entries. If so, unused entries are
reclaimed again and redistributed to the next group in line.
This process repeats until either all groups are reduced again
or all previously unused entries have been used.

4.3 Iterative greedy reduction
IGR has two objectives: a primary one to keep reduced
group sizes under resource limit, and a secondary one to
restrict the max port oversub in each group to an upper bound.
Algorithm 2 describes the three-step structure of IGR. Step 1 is
the same Table Carving heuristic of Algorithm 1. In step 2, IGR
iteratively reduces all groups (line 5-11) until both conditions
are met: (1) sum of all group sizes meets the table limit T ,
and (2) each group size meets its allocated space limit Ti. Each
group is reduced individually by the REDUCESINGLEGROUP
function. IGR is greedy because reduction could terminate
in the middle of an iteration once the two conditions are met
(line 8-9), leaving some groups reduced more than the rest.
Some groups may fail to meet the upper bound θ on port
oversub, especially when θ is very tight in the initial iterations.
IGR relaxes θ in each iteration (line 10) by a constant step size.
A more relaxed θ enables REDUCESINGLEGROUP to reduce
the group size more. If the reduced group size stops decreasing
after θ has been relaxed for thresh=3 consecutive times, we
consider the reduction “stuck”. thresh is a tunable parameter
that allows us to balance between aggressive reduction and
more port oversub tolerance. When the reduction is stuck, the
Group Pruning heuristic is invoked (line 11).

REDUCESINGLEGROUP starts the search for a final group
from the original group’s ECMP form (line 15). It locks
the relative weight ratio between ports in the group under
reduction G′. In each iteration, ports in G′ are sorted by their

3See §A.2 for a comprehensive monolithic formulation.
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weights in descending order (line 7). Once the assigned weight
of the first port w′

1 is determined, all the remaining port weights
are determined based on the relative weight ratio (line 18-19).
The number of iterations performed on each group is limited
to a small constant IT ER. REDUCESINGLEGROUP conducts
the search in increments of

⌈wmax
IT ER

⌉
instead of the smallest

increment of one (line 17), to ensure the search process
finishes within IT ER iterations. This effectively mitigates the
long convergence time (see §5.6) that iterative-reduction-style
algorithms suffer from—there are many groups (Scalability
challenge) and many ports per group (Path Diversity challenge)
to iterate through. REDUCESINGLEGROUP makes the best
effort to meet the oversub limit and returns the smallest group
it has found when it hits the group size limit (line 21- 24).

5 Evaluation
In §5.1, we describe FabricEval, a data center TE evaluation
framework that we created. The DMIR and IGR algorithms
are compared to WCMP TableFitting under a wide range
of network conditions in §5.3-§5.5. We also present group
reduction speed as another metric in §5.6. §5.7 investigates the
application layer impact. §5.8 inspects the side effect of Group
Pruning. §5.9 discusses the contribution of each heuristic.

5.1 FabricEval evaluation framework
FabricEval is a network-level data center TE evaluation
framework. It models the entire data center TE pipeline
end-to-end: from taking snapshots on network states and traffic
demands to generating TE solutions, group reduction and
finally implementing the solution on data plane. FabricEval
employs a modular design that allows us to plug in different
TE solving algorithms, group reduction algorithms, and switch
hardware models with different configurations. This enables
us to compute both the ideal link utilization expected by the
TE solution and the actual link utilization from different group
reduction algorithms, on all links. It also tracks table usage and
traffic loss due to missing forwarding entries from switches.

In FabricEval, topology inputs are represented as Proto-
buf [49]. Traffic demands are represented as plain matrices.
Inputs are passed to a TE solver module, which by default
runs the same TE algorithm used in our production fabrics.
The generated TE solution is organized by cluster and
forwarded to a group reduction module of each cluster. Finally,
reduced groups are installed on the corresponding switches.
FabricEval is implemented in 15,820 lines of Python code.
Since FabricEval is not a packet-level simulator, we use
ns-3 [51] to study application layer metrics.

Open source releases. The source code of FabricEval,
DMIR, IGR and our implementation of WCMP TableFitting
is released online [1].

5.2 Experimental setup
All configurations used in the evaluation are developed from
a baseline production-like configuration that includes (1) a
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Figure 5: (a) 50% spread achieves best link utilization using
production traffic trace and routing settings. (b) larger spreads
are more robust against traffic spikes.

65-cluster heterogeneous spine-free fabric, (2) a path diversity
spread of 50%, and (3) a traffic matrix (TM) representing the
total egress/ingress demands between ToR pairs. Due to secu-
rity and privacy reasons, we cannot publish most results from
production fabrics and traffic traces. However, we carefully
tuned FabricEval to match production results. Using FabricE-
val also avoids the difficulty of running controlled experiments
on live fabrics. All experiments in this paper are conducted on
a Dell PowerEdge R720 server, with two 20-core Intel Xeon
E5-2680 CPUs, 128 GB of memory and 1.2 TB of disk.

Network topology. The baseline fabric features 2.6K
switches and 83.2K links. Each cluster in the fabric has 32
S1 switches. Each S1 has 32 ports—8 facing the S2 switches
and 24 facing the host machines. The aggregation block in each
cluster has 4 S2 and 4 S3 switches interconnected as a nonblock-
ing FatTree; each has 128 ports—64 facing up and 64 facing
down. The 64 up-facing ports on S3 are evenly spread to 64 peer
S3 switches. The S2 switches connect to each S1 with 2 links.

Traffic matrix. The baseline TM captures properties
found in production traffic traces. Clusters have unequal
egress and ingress demands—storage clusters, for example,
typically have a small ingress but a large egress because
applications often read more data than they write. The
demands follow an exponential distribution. The traffic
volume between a cluster pair is characterized by the Gravity
model [52, 55, 63, 70]. A cluster’s total egress/ingress volume
is distributed proportionally among peer clusters, weighed by
each peer’s total volume. Incremental data center expansion
could leave a few clusters deployed but having zero demand.
They can still be used by other clusters for transit.

5.3 Spread and path diversity
The Path Diversity challenge in §3 focuses on balancing
resilience to traffic changes and optimal efficiency. This
tradeoff depends on the spread. To determine an appropriate
spread for our evaluation, we run production trace using
realistic routing settings (i.e., TM fed into TE comprises peak
demands of the past 24 hours and TE is recomputed every hour)
on a large spine-free production fabric4. Figure 5a shows the
link utilization for this realistic scenario, normalized relative
to the optimal TE solution computed against the instantaneous

4§D.3 includes link utilization data for more production fabrics.
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Table 2: Summary of various fabrics used in FabricEval.
name topology #

Gen1
#
Gen2

#
Gen3

link
failure

Fabric 1 spine-free 22 22 21 none
Fabric 2 spine-free 11 11 11 none
Fabric 3 spine-free 65 0 0 none
Fabric 4 spine-free 22 22 21 1%
Fabric 5 Clos 21 21 22 1%
Fabric 6 random graph 22 22 21 none

demand (i.e., assuming traffic measurement and TE solution
programming have zero delay). We find that 50% spread
achieves link utilization closest to OPT (1.14× OPT) because
higher spreads rely on costly indirect paths and lower spreads
are fragile to TM changes. To understand how spread values
affect TE solution’s robustness, we further study more extreme
cases, such as when 25% of the original demands spike by 4×.
We define robustness as the link utilization post-spike divided
by the pre-spike link utilization for the same spread. Figure 5b
shows this ratio for each link in the same production fabric
for 0% (no) spread, 50% and 100% (full) spread. As expected,
100% spread is most robust since spikes are spread throughout
the network. 50% spread is significantly more robust than
0%. Overall, 50% spread proves to be a reasonable tradeoff
between TE optimality and robustness.

Figure 6 compares the link utilization of IGR and DMIR
with that of the TE solution (assuming no table size constraint)
and WCMP TableFitting (TF) for five spread values. The re-
sults are collected on the baseline fabric and TM. In each graph,
the y-axis shows the link utilization of the 50th (p50) and 99th
(p99) percentile, and the maximum (max) link in the network.
We see that with 0% spread, all algorithms come close to the
link utilization of the TE solution, which is not surprising since
most flows have a group size of one. As the spread increases,
the link utilization difference between the TE solution and
the group reduction algorithms increases. With a 50% spread,
WCMP TF’s link utilization is 25.4% higher at p99 and 67.1%
higher at max. DMIR sees link utilization 1.6% higher at p99
and 9.1% higher at max. IGR increases over the TE solution
by 4% and 7.4%, respectively. The result at 75% spread largely
resembles that at 50% spread, except for a seemingly counter-
intuitive link utilization improvement from WCMP TF 5.

5WCMP TF’s result at 75% spread does not reflect a true improvement.
The reason is that the groups generated by WCMP TF do not fit in the switch

As the spread further increases, link utilization continues
to deteriorate due to increased pressure on the group tables. At
100% spread, all algorithms achieve a link utilization equal to
the TE solution. Since 100% spread forces demands to spread
across all paths, groups become identical and after dedupli-
cation, they easily fit in the table with minimum precision loss.

5.4 Heterogeneous fabrics
In order to understand how different fabric configurations
affect TE precision, we construct a list of fabrics that differ
in scale, hardware and/or topology, as described by Table 2.
Fabric 1 is the baseline fabric. Fabric 6 is a Jellyfish-like fabric
with random graph topology [61] using the same hardware
as fabric 1.

Figure 7 shows how results differ across these fabrics.
Compared to fabric 1, all three algorithms in fabric 2 and 3
operate close to the TE solution in terms of both median and
tail utilization. This confirms our analysis in §3 that Scalability
and Heterogeneity both have an impact on precision loss.
The tail link utilization in fabric 3 is noticeably higher than
other fabrics of same scale because the same TM is applied
to a fabric with lower capacity. Note that DMIR’s max link
utilization in fabric 3 is 10% higher than the TE solution, while
WCMP TF and IGR are 12.4% and 3% higher, respectively.
This is caused by a 120-second timeout on DMIR. Due to the
nature of MIP problems, we use a timeout to ensure DMIR
terminates within a duration comparable to the other two
algorithms, which can lead to a suboptimal solution. Without
this timeout, DMIR can still find an optimal solution within
10 minutes in all the experiments we run.

Looking at fabric 1 and 4, we find that the impact of failure
is mostly on tail link utilization. The max link utilization
under failure has increased by up to 63% over that without
failure. Among the three algorithms, DMIR and IGR are more
affected than WCMP TF. Compared to fabric 1, precision
loss in fabric 5 is moderate—WCMP TF is 9% higher than
the TE solution, yet IGR and DMIR are still effective in
bringing this down to 1.3%. This aligns with our production
observation that precision loss in Clos fabrics is not as grave
as spine-free fabrics. Precision loss in fabric 6 is high. This is
due to the asymmetry and imbalance introduced from random
link assignment. WCMP TF has a max link utilization 55.1%
higher than the TE solution, while IGR and DMIR lower this

table. The overflow groups cause the associated traffic being dropped. This
benefits the groups that do fit.
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Figure 9: Comparison of group reduction speed.

gap to 8.4% and 7.5%. Generally speaking, IGR and DMIR
are more effective when the topology is irregular.

5.5 Traffic pattern
The baseline TM has an average cluster ingress/egress volume
that is about 40% of the cluster’s bisection bandwidth. 15% of
the latest generation clusters are configured to be in expansion
mode with empty demands. For comparison, we created two
more TMs: a high load TM and a flat TM. The high load TM
is generated in the same way as the baseline TM, except that
its average cluster volume is raised to 70% of the bisection
bandwidth and all clusters have non-empty demands. The flat
TM does not follow the Gravity model. Instead, each cluster
has an equal ingress and egress demand of 7.68 Tbps (240
Gbps per ToR) that is uniformly spread across all peer clusters.
There are no empty clusters in the flat TM. We run all three
TMs on the baseline fabric with 50% spread.

With the high load and flat TMs, WCMP TF results in
traffic loss due to group table overflow, as shown in Figure 8.
As much as 7% and 12% of the total demands are dropped,
respectively. In the high load TM scenario, even with a fraction
of groups rejected, WCMP TF increases the actual link
utilization over the TE solution by up to 62.1%. On the other
hand, DMIR increases actual link utilization by only 9.4%
over the TE solution at max, and IGR increases by 19%. This
result is consistent with the increase found in the baseline TM
scenario. The flat TM results are slightly better: WCMP TF
has a max link utilization 28.4% higher than the TE solution,
while it is 11.1% for DMIR and 20.2% for IGR.

All three algorithms will result in congestion loss due to
oversub on some links. For example, in the high load TM
scenario, WCMP TF’s actual max link utilization is 1.49,
almost 50% over the physical link capacity, while that of
DMIR and IGR are 1.007, and 1.096. This is however expected
given that the max link utilization of the TE solution is over 0.9.
Any error in group reduction could lead to traffic exceeding the

link capacity. While the average cluster volume is configured
to 70% of the bisection bandwidth, link utilization of the TE
solution ends up much higher. We attribute this to the blocking
property of the spine-free topology.

5.6 Execution speed

The execution speed of the IGR and DMIR algorithms is
important since they are used online. Each switch runs group
reduction twice, first on the transit groups and then on
the src groups. We measure the total time to complete
both reductions on each switch. A number of representative
configurations are selected to cover the common and corner
cases. They include: (1) fabric 2 (small-scale) in §5.4, (2) 0%
spread in §5.3, (3) the baseline fabric/TM in §5.5, (4) 75%
spread in §5.3, and (5) the high load TM in §5.5.

Figure 9 plots the distribution of per-switch group reduction
time as standard boxplots with max/min, first/third quartile
and median. As can be seen, the reduction time on each switch
spans a wide range: there is about two orders of magnitude
difference. The reduction time differs significantly across
switches as well as between different group types. On switches
with smaller tables it take longer to fit the groups since there is
a tighter table size constraint. The transit groups are easier
to reduce than src groups because they are mainly ECMP-like
groups. If a cluster has a zero demand, there is no src group
to be installed on the switches in this cluster. The execution
time is then solely up to transit reduction.

DMIR and WCMP TF have overlapping ranges. In some
scenarios, such as 0% and 75% spread, DMIR is slower than
WCMP TF, while in other cases, they are on par. IGR is the
fastest among all three. It generally completes group reduction
in under a second. Overall, IGR is 17-42× faster than DMIR
and 10× faster than WCMP TF by comparing the median
reduction time.
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5.7 Impact on flow completion time
Thus far, we have shown our approach is effective at meeting
TE’s link utilization objectives. We now explore the impact
our approach has on flow completion times. We extend our
FCT comparison to include flowlet-based and host-based
schemes. The traffic trace is constructed by sampling the flow
sizes and start times from published production measurement
studies [8, 35, 41, 56, 69] while ensuring that the total flow size
of each cluster adds up to its demand in the TM.

In contrast to ECMP/WCMP, TE approaches such
as [5, 37, 38, 65] balance load at the flowlet level [34].
While this finer grain load balancing could improve FCT,
most large-scale DCN operators adopt some form of ECM-
P/WCMP [2,22,47,58,60] instead of a flowlet-based approach.
We attribute this to the universal vendor support for ECM-
P/WCMP and the simplicity of deployment, e.g., no parameter
tuning is required. We focus on LetFlow [65], a recent flowlet
proposal that provides significant FCT performance gains.

We implemented IGR, DMIR, WCMP TF and LetFlow
in ns-3, and use the baseline fabric/TM. As per [65], each
switch uses a flowlet table that maps a 5-tuple hash to an
egress port id. ECMP groups are still required to track ports
that can reach the destination for each flow aggregate. When
the inactive interval in a flow exceeds the pre-configured
timeout, the flowlet entry expires and a new egress is randomly
selected from the corresponding group. The best timeout
value is picked by sweeping through a range of timeout values.
We assume the flowlet table is subject to hardware resource
constraints similar to WCMP. A 32K-entry memory is split
in half—16K for groups and 16K for flowlets6.

Figure 10 shows that IGR and DMIR reduce the p99 FCT of
WCMP TF by 28.1% and 27.8%, respectively. LetFlow with an
unlimited table size outperforms all other candidates, shorten-
ing the p99 FCT of WCMP TF by 37.8%. With a 16K table size

6Cisco ACI fabric with Nexus 9300 switches supports flowlets under the
feature named Dynamic Load Balancing [13]. A total of 4096×8-way ECMP
entries (see Table 7 in [14]) are available on chip.

constraint,LetFlow underperforms IGR and DMIR but remains
better than WCMP TF by 8.7% in p99 FCT. To put this improve-
ment into perspective, we run flows of two sizes in two produc-
tion fabrics, then we steadily increase average link utilization
of the fabric, the p50/p99 FCTs at every link load are collected.
Figure 11 illustrates how FCT normalized to each flow’s min
RTT correlates with link utilization (more data in §D.4). On
the more loaded side of the spectrum, a 10% reduction in link
utilization can translate to a 20-40% reduction in p99 FCT.

Another class of designs that has reported significant FCT
gains is host-based TE (e.g., PLB [53]). [53] shows that PLB
can fully correct load imbalance caused by ECMP between two
links with 1:2 capacity difference. However, with capacity dif-
ference of 1:100, PLB can only correct it to 1:3.5, and p99 FCT
is 2.3× higher than that of a load balanced scenario. Figure 10
indicates that PLB alone achieves FCT on par with WCMP TF
and we hold the same view as [53] that in-network WCMP and
host-based PLB are complementary in performance benefits.

5.8 Group Pruning’s impact on path diversity
A potential side effect of Group Pruning is that heavily pruned
groups might lose a lot of paths. This reduced path diversity
could impact the network’s resilience to link failures. To un-
derstand the impact of pruning, we record the paths/ports used
by all groups in the baseline fabric/TM experiment. Figure 12
shows that IGR prunes less than 0.01% of the total groups,
while DMIR prunes 0.07% of them. DMIR’s pruning decision
is more aggressive than IGR: 48 groups (out of 1350624) are
pruned down to a single port. In contrast, groups pruned by
IGR only lose 1-3 ports. More results can be found in §D.5.

Figure 12 also shows the fraction of traffic impacted by
Group Pruning. Impacted means that the traffic is steered
away from pruned paths, but is not dropped. Despite DMIR’s
more aggressive pruning, the total traffic impacted (area under
curve) is lower than IGR. We attribute this to DMIR’s tradeoff
between path diversity and lower traffic impact.

Overall, the small number of aggressively pruned groups
and tiny fraction of traffic impacted suggests that the negative
impact of Group Pruning is minor.

5.9 Ablation study
Now, we evaluate how much each of the heuristics in §4 con-
tributes to the overall precision improvements. We use the
baseline fabric/TM and 50% spread. First, the contribution of
Group Sharing is evaluated by disabling this heuristic in both
DMIR and IGR. Figure 13 illustrates the significant impact
of Group Sharing on IGR: 5× decrease in max link utiliza-
tion. DMIR is improved by 1.7×. Additionally, Group Sharing
reduces the O(N2) transit group entries (e.g., 162K) to no
more than 64 (see §D.2 for details). Next, the contribution of
Table Carving is demonstrated in Figure 14. Instead of standard
Table Carving, the algorithms are modified to carve the table in
constant sizes: each group receives an equal share of the table
space. IGR and DMIR with standard Table Carving perform
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Figure 15:
Impact of Group Pruning.

1.2× and 1.24× better than the constant version. Finally, we
look at the contribution of Group Pruning in Figure 15. 75%
spread is used to reflect how Group Pruning avoids traffic loss.
The pruning logic is hard to completely disable in both algo-
rithms, so instead, we add Group Pruning to WCMP TF. With
Group Pruning, WCMP TF can avoid group installation fail-
ures and the consequent traffic loss entirely, at the cost of a 2.4×
increase in link utilization. However, this increase is specific
to certain scenarios and can be offset by other improvements.

5.10 Recommendation
While both our algorithms perform well, DMIR generally has
lower precision loss than IGR. Though its advantage is usually
small, some extreme scenarios can benefit from DMIR. For
example, in the high load TM scenario (§5.5), DMIR is the
only option that avoids link utilization above 1.0, except for
a slight violation on the worst link. In contrast, IGR is always
faster than DMIR, so it responds better to traffic load changes.
Because of that, we recommend generally using IGR, except
for difficult scenarios where low precision loss matters.

6 Related work
Data center TE. Many data center network designs [2–4, 22]
leverage flow-level ECMP [30] to achieve failure resilience
and efficient bandwidth utilization. However, ECMP is
known to perform poorly with asymmetry and heterogeneity.
WCMP [73] improves over ECMP. Niagara [36] distributes
traffic using flow rules instead of group rules. DASH [32] splits
traffic via comparison-based hash space partition. It avoids
WCMP-style entry replication but requires arithmetic oper-
ation and P4 [11] support. Our work assumes fixed-function
switches but also applies to programmable switches.

Flare [34], CONGA [5], HULA [38], Clove [37], Let-
Flow [65], and Contra [31] leverage the elasticity of flowlets
to balance traffic load across paths. In networks with different
path latencies [12,17,42,45,50,66,67], one has to carefully se-
lect the flowlet detection timeout to avoid reordering. Flowlets
are also susceptible to traffic characteristics, e.g., [43, 62]
find that RDMA traffic [6, 19, 23, 27, 39, 47, 74] exhibits
weak flowlet pattern. As described in LetFlow [65], flowlet
switching requires switch support [13], which is not as widely
available as ECMP. There are also works like DRILL [20] and
RPS [16] that operate at packet-level.

Host-based TE approaches like Presto [26], Hermes [68],
MPTCP [54], FlowBender [33], RePaC [71] and PLB [53]
assume either no in-network support or merely ECMP.
PLB [53] shows that our work complements host-based TE.

Spine-free data center. Dragonfly [40], Dragonfly+ [59],
Slim Fly [10], Slingshot [15], Aquila [21] have studied
direct-connect topology networks. However, they primar-
ily focus on HPC networks. Meanwhile, most deployed
DCNs [2, 22] employ a Clos topology with a spine. Harsh et
al. [25] discusses ECMP-based TE in spine-free data centers.
Sirius [7] and RotorNet [46] are spine-free but spread traffic
using extended VLB [72]. Jupiter [52] explores advanced TE
in spine-free DCNs. We believe our work is among the first
to improve TE precision loss in spine-free DCNs.

Wide area network TE. Wide area network TE faces sim-
ilar switch hardware constraints. SWAN [28] allocates traffic
demands to a set of tunnels, which are limited by the number
of supported switch rules. B4 TE [29] generates groups that
consume 14× the switch table space. It has to decouple traffic
splitting rules across two stages in its Clos fabric to reduce
per-switch table consumption. Meta’s Express Backbone [48]
and Edge Fabric [57] run centralized TE on BGP and ECMP.
We found no available data on their TE precision loss.

7 Conclusion
Precision loss is an inherent problem when implementing
traffic engineering with limited switch hardware resources
and the shift towards spine-free topologies exacerbates the
problem. We introduce two group reduction algorithms that
offer different tradeoffs in terms of precision and execution
time. Both algorithms use heuristics to address challenges,
such as the hardware-agnostic nature of TE algorithms, switch
heterogeneity, and path diversity. Our evaluation shows they
achieve significant improvements in various network scenarios
compared to the current solution.
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Appendix
A Formulations
A.1 Data center TE formulation
The TE system solves a multi-commodity flow (MCF) problem
on a network G=(V,E) with a set of vertices/switches V and
edges/links E. Assume that there are k commodities between
sources and destinations, denoted as (si,ti,di),0≤ i≤k. Each
commodity has demand di between source si and destination
ti. The objective of the TE system is to balance load (i.e., link
utilization) across all links. This objective can be linearized
as minimizing the maximum link utilization. Below is the
path-based MCF formulation.

minimize umax (2a)
s.t. u(x,y)≤umax,∀(x,y)∈E (2b)

u(x,y)=
∑

k
i=1∑p∈P(x,y)i

fip

c(x,y)
, ∀(x,y)∈E (2c)

k

∑
i=1

∑
p∈P(x,y)i

fip≤c(x,y), ∀(x,y)∈E (2d)

∑
p∈Pi

fip=di, ∀i∈{1,...,k} (2e)

fip≤di ·
cp

S·∑p∈Picp
, ∀p∈Pi (2f)

fip>=0, ∀p,i (2g)

umax is the maximum link utilization of the network, u(x,y)
is the link utilization of link (x,y)∈ E. c(x,y) represents the
capacity of link (x,y). fip is a portion of commodity i (i.e., flow)
assigned on path p, where p includes multiple links between
the source and destination. Pi is the set of all paths between si

and ti of commodity i. P(x,y)
i is the subset of Pi where all paths

contain link (x,y). cp represents the capacity of path p, which
is the bottleneck capacity across all links in this path.

Equation 2d is the (optional) link capacity constraint. If a
commodity has a high demand such that no valid assignment
exists to meet this constraint, the problem is considered
infeasible. However, if we are willing to overload a link, this
constraint can be removed. Equation 2e is the flow conser-
vation constraint. It indicates that all demands must be fully
served, the network cannot hold or drop any demand. Equation
2f is the path diversity constraint mentioned in §3. It enforces
that no more than a certain fraction of demand di is assigned
to flow fip. The fraction is proportional to the total capacity of
the paths used to serve di, which is controlled by a spread pa-
rameter S∈(0,1]. When S is close to 0, fip becomes essentially
unbounded. When S approaches 1, flows for commodity i are
forced to use all available paths. Note that S cannot be set to
0, but a small enough value is sufficient to completely remove
this constraint, as fip is upper bounded by Equation 2e instead.

A.2 Multi-group monolithic reduction
To extend the discussion in §4.2, we now consider another
group reduction formulation. Unlike Equation 1, this for-
mulation attempts to combine all the single-group reduction
problems into one monolithic formulation that can be directly
solved by calling the MIP solver. Since this monolithic for-
mulation needs a single optimization objective, we construct
a weighted sum of L1-norm based on each group’s individual
L1-norm, where the weights are the total traffic volume carried
by each group. The intuition is that groups with more traffic
contribute more to the overall precision loss metric. Therefore,
the MIP solver should spend more effort in optimizing those
groups. Equation 3 shows the comprehensive formulation.

minimize
n

∑
i=1

(
p

∑
j=1

wi j)·
p

∑
j=1

∣∣∣∣ wi j

∑
p
j=1wi j

−
w′

i j

∑
p
j=1w′

i j

∣∣∣∣
s.t.

n

∑
i=1

p

∑
j=1

w′
i j ≤T

w′
i j ∈Z+,∀i∈{1,...,n}, j∈{1,...,p}

(3)

Gi=(wi1,wi2,...,wip) is the original group i, wi j is the original
weight on port j of group i. Similarly, w′

i j is the reduced weight
on port j of group i. T is the total available table space on
the target switch. This formulation only enforces the sum of
group sizes across all reduced groups to meet the table space
limit, there is no per-group space limit and the Table Carving
heuristic is not invoked.

Multi-group monolithic formulation scales poorly as men-
tioned in §4.2. For a large-scale production DCN, we fail to find
a solution to the monolithic formulation after running the latest
version of Gurobi solver for days. On the other hand, with a
one-hour timeout set on Gurobi, the resulting solution is consid-
erably worse compared to that obtained from single-group MIP.

B Example snippet of TEIntent
The TE system in large-scale DCNs usually divides the TE
solution into batches, where each batch contains instructions
of traffic split for all demands in a cluster. In FabricEval,
such a batch is referred to as a TEIntent. The instruction
of traffic split for one demand in a cluster is referred to
as a PrefixIntent. A TEIntent can contain multiple
PrefixIntents. Each PrefixIntent needs to specify its
type (src or transit). This information is required to later
translate the PrefixIntent to groups. The PrefixIntent
also specifies the name of the destination aggregation block it
wants to reach. Here the name of the destination cluster is not
used instead because the PrefixIntent indicates the ports
to use in the aggregation block. It should be consistent to use
names of aggregation blocks for source, transit, and destination.
Finally, the PrefixIntent lists all the northbound ports on
S3 used to forward the demand, and the amount of traffic
to be placed on each port in Mbps. The Protobuf format of
TEIntent and PrefixIntent is as follows.
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1 message PrefixIntent {
2 enum PrefixType {
3 UNKNOWN = 0;
4 SRC = 1;
5 TRANSIT = 2;
6 }
7

8 message NexthopEntry {
9 // Name of next-hop port.

10 string nexthop_port = 1;
11 // Traffic volume in Mbps.
12 double weight = 2;
13 }
14

15 string dst_prefix = 1;
16 uint32 mask = 2;
17 string dst_name = 3;
18 PrefixType type = 4;
19 repeated NexthopEntry nexthop_entries =5;
20 }
21

22 message TEIntent {
23 // Name of cluster.
24 string target_cluster = 1;
25 // A list of PrefixIntents.
26 repeated PrefixIntent prefix_intents = 2;
27 }

We also capture an actual TEIntent forwarded to one of
the clusters in an experiment in §5.4. Due to the large Protobuf
size, only a small snippet is demonstrated below.

1 te_intents {
2 target_cluster: "toy3-c1"
3 prefix_intents {
4 dst_name: "toy3-c2-ab1"
5 type: SRC
6 nexthop_entries {
7 nexthop_port: "toy3-c1-ab1-s3i1-p1"
8 weight: 25.5
9 }

10 nexthop_entries {
11 nexthop_port: "toy3-c1-ab1-s3i2-p1"
12 weight: 25.5
13 }
14 nexthop_entries {
15 nexthop_port: "toy3-c1-ab1-s3i3-p1"
16 weight: 25.5
17 }
18 nexthop_entries {
19 nexthop_port: "toy3-c1-ab1-s3i4-p1"
20 weight: 25.5
21 }
22 nexthop_entries {
23 nexthop_port: "toy3-c1-ab1-s3i1-p3"

24 weight: 0.765625
25 }
26 nexthop_entries {
27 nexthop_port: "toy3-c1-ab1-s3i2-p3"
28 weight: 0.765625
29 }
30 nexthop_entries {
31 nexthop_port: "toy3-c1-ab1-s3i3-p3"
32 weight: 0.765625
33 }
34 nexthop_entries {
35 nexthop_port: "toy3-c1-ab1-s3i4-p3"
36 weight: 0.765625
37 }
38 }
39 prefix_intents {
40 dst_name: "toy3-c3-ab1"
41 type: SRC
42 ...
43 }
44 prefix_intents {
45 dst_name: "toy3-c2-ab1"
46 type: TRANSIT
47 nexthop_entries {
48 nexthop_port: "toy3-c1-ab1-s3i1-p9"
49 weight: 3095.288
50 }
51 ...
52 }
53 }

The network entities follow a naming scheme of [network
name]-[cluster name]-[aggregation block name]-[switch
stage][switch name]-[port name]. Each entity is indexed in
the topology, hence its name is always the entity type + index.
For example, in next-hop port “toy3-c1-ab1-s3i1-p1”, “toy3”
is the network name, “c1” identifies cluster 1, “ab1” is the only
aggregation block in cluster 1, “s3i1” refers to the first switch
in stage 3, and “p1” is the first port on this switch.

C Time complexity of IGR
Step 1 of IGR (Table Carving, line 2-3 of Algorithm 1)
computes len(Gi), SUM(Gi) and ∑i SUM(Gi). This requires
iterating over all p port weights in all n groups, so it takes
O(pn). Function REDUCESINGLEGROUP runs at most IT ER
iterations in the outer loop. The inner loop iterates over each
port. So REDUCESINGLEGROUP takes O(p·IT ER). Each
iteration of oversub relaxation (line 5-11) takes O(pn·IT ER).
In the worst case, oversub relaxation stops when all groups are
pruned until one port is left (zero port left means traffic loss).
Here we make a reasonable assumption that a set of singleton
groups must fit. This means the while loop (line 5) runs at
most O(pn) times, hence making step 2 O(p2n2 ·IT ER). Step
3 Group Sharing requires scanning all groups and their ports
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Table 3: Group table space usage on sampled S1/S2/S3
switches by different group types.

stage group type original usage post-reduction
S1 src 8 entries 8 entries
S2 src 1746624 entries 64 entries
S3 src 2241913 entries 18285 entries
S1 transit 0 entry 0 entry
S2 transit 162112 entries 64 entries
S3 transit 792738 entries 60 entries
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Figure 16: (a, c, e) Median and tail link utilization if running
original group reduction algorithm vs. running it with infinite
group table size, so that there is only precision loss caused by
rounding weights. (b, d, f) Per-link utilization delta over the
TE solution.

to mark duplicates, so it is O(pn). Overall, the time complexity
of IGR is O(pn+p2n2 ·IT ER+pn), which is polynomial.

D Extra evaluation
D.1 Quantization error
Rounding fractional weights in groups to integers introduces a
minor yet acceptable quantization error. We choose to express
weights in Mbps so that the quantization error of rounding is
at most ±1Mbps. Weights in Kbps or bps can further reduce
quantization error, but it comes at a cost where the Protobuf

is bloated with larger integers. Figure 16 shows that the
quantization error of Mbps granularity is sufficiently small.

We repeat the baseline fabric/TM experiment using three
group reduction algorithms, WCMP TableFitting, DMIR and
IGR, with unlimited group table space on each switch. In other
words, the original fractional weights in each group only need
to be rounded to integers, but will not be reduced in size—as
there is infinite group table space to store any arbitrary number
of entries. The precision loss over the TE solution from each
group reduction algorithm with unlimited table space reflects
the pure impact of rounding.

For instance, WCMP TableFitting is significantly improved
with unlimited table space. The TE implementation is almost
identical to the TE solution. Per-link utilization delta over the
TE solution is also reduced to close to zero, which means there
is very minimum oversub and the implementation overall is
accurate. Similarly, for DMIR and IGR, the implementation
is also improved, although the improvement is not as large as
WCMP TableFitting. The TE precision loss (i.e., quantization
error) achieved by all three group reduction algorithms is
generally under 0.01%.

D.2 Table usage
Table 3 lists the group table usage statistics from sampled
S1/S2/S3 switches in the baseline fabric from §5.4. The
original usage column indicates the number of entries required
if the table space is unlimited (pre-group-reduction). The
post-reduction column indicates the actual number of entries
consumed found on the switch (after running group reduction).
We can see that table usage on S1 switches is low and group
reduction is irrelevant here. This is because the groups are
always ECMP on S1 switches and a shared group is used for
serving all demands. As mentioned in §4, the Group Sharing
heuristic significantly reduces the number of entries required
by transit groups to no more than 64, on both S2 and S3
switches. The src groups on S3 switches see a table usage
reduction from 2241913 to 18285—a 122× reduction!

D.3 Spread in TE solution
Figure 17 demonstrates the link utilization relative to optimal
link utilization under shifting traffic demands for 7 different
production spine-free fabrics. As can be seen, 50% spread
generally yields the best link utilization comparing to other
spreads. In some fabrics, e.g., Fabric A and Fabric D, 25%
or 75% spread can achieve a link utilization similar to 50%
spread due to the traffic demands on these fabrics are either
more stable or more uncertain.

Figure 18 plots the CDF of per-link utilization delta under
different spreads. Some links are severely under-utilized
and some are severely over-utilized by up to 65%. However,
the relative percentage change in link utilization does not
always translate into high absolute link utilization because the
traffic volume carried on such links can be low. We are more
interested in the absolute link utilization than per-link delta.
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Figure 17: Production link util. of various TE spreads for 7 different fabrics.
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Figure 19: Production flow completion time vs link util. for 5 fabrics.

Figure 20: Original path diversity (x-axis) vs. reduced path
diversity (y-axis) for each group of 64 ports.

D.4 Flow completion time
Figure 19 extends Figure 11 in §5.7 and shows a total of 5
production fabrics. The first 4 fabrics are spine-free fabrics of
different sizes and the last one is a large traditional Clos fabric.
As we can see, these fabrics share the same general trend—tail
flow completion time of large flows could increase drastically
as the average link load increases. In terms of network topol-
ogy, spine-free fabrics see no difference than the Clos fabric,
which confirms that the tail FCT increase is a universal trend.

D.5 Reduced path diversity
Group Pruning is a mechanism to further reduce group sizes
while sacrificing path diversity. With the pruning policy
introduced in §4.1, we try to minimize the impact on path
diversity by pruning the small weights in the groups. Figure 12
and Figure 20 confirm that the chosen pruning policy indeed
has very minor impact on path diversity. We obtain all the
groups in the baseline fabric and plot a scatter plot of their
used paths in the TE solution vs. TE implementation. As
Figure 20 shows, groups (markers) on the y = x line are not
pruned and see no reduction in path diversity. Those not on
the line have reduced path diversity. The closer a group is to
the x-axis, the more reduction in path diversity it has. DMIR
is more aggressive in pruning, some groups could have only
a few paths left. However, such groups only constitute less
than 0.003% of the total groups (48 out of 1350624) and their
traffic impact is insignificant as discussed in §5.8.

One might argue that even 48 groups (of one single port left)
would be a blast radius too large. If link failure does happen,
traffic on these groups will be dropped. However, these 48
groups are distributed across different switches, they do not
share the same port/link. The probability for all of them to fail
simultaneously is extremely low. On the other hand, we have
implemented a protective lower bound in the Group Pruning
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heuristic. If users prefer not to have single-port groups, they
can set this lower bound to a number greater than 1 (e.g., 2). In
which case, Group Pruning will stop when there are only two
ports left in the group. The larger this lower bound, the less

likely the group is going to drop its traffic (unless all ports in
the group fail). But this also comes with a disadvantage: groups
may no longer fit in the table if the lower bound is set too large.
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