
Balancing SDN Control Plane Availability and
Traffic Engineering Efficiency in Data Centers

Brian Chang†∗, Keqiang He§∗, Shawn Shuoshuo Chen‡, Jiaxin Lin†, Mingyang Zhang∥,
Wenfei Wu††, Aditya Akella†

†Univerity of Texas at Austin §Shanghai Jiao Tong University ‡Carnegie Mellon University ∥Google ††Peking University

Abstract—Many proposals have demonstrated the efficiency
advantages of software-defined networking (SDN) in managing
data center networks. Common practices employ centralized
traffic engineering (TE) in the SDN control plane to optimize
load balancing and throughput. Meanwhile, for high availability
purposes, the control plane is partitioned to ensure the impact of
a single faulty controller is contained. However, the interaction
between these two aspects is often overlooked. In particular,
we show that the current control plane partitioning approach
leads to imbalanced link loads and degraded application per-
formance. To address this issue, we propose virtual slicing, a
new control plane partitioning scheme. Virtual slicing achieves
desirable traffic engineering performance while retaining the
availability guarantees from the current approach. Virtual slicing
is implemented and evaluated with real-world and synthetic
traffic traces on production spine-free data center networks.
Results show that virtual slicing reduces tail link utilizations by
up to 28.4%, and improves flow completion times by up to 36%.

Index Terms—datacenter networks, software-defined network-
ing, control plane partition, traffic engineering

I. INTRODUCTION

Data center networks (DCNs) need to achieve two crucial
objectives: (1) efficient utilization of the network infrastructure
and (2) limited impact from failures. Traffic engineering
(TE) addresses the efficiency requirement by balancing link
loads and maximizing throughput [1]–[4]. Recently, TE im-
plemented in a centralized software-defined networking (SDN)
control plane [5]–[11] has seen a growing presence. Compared
to traditional networks with distributed control, a failed or
faulty control plane in SDN has a global impact on the
network. For example, the control plane may route traffic
over links with insufficient bandwidth or no reachability to a
destination. Unfortunately, current efforts to limit the scope
of such impact do not interact well with efficiency-centric
TE implementations or may even impose a penalty on TE
performance.

Modern SDN designs [7], [10] use an approach named
physical sharding to divide the data plane network into
multiple disjoint sub-networks and manage each sub-network
with its own independent SDN controller. The monolithic
control plane is effectively divided into several control plane
partitions with limited impact under faulty behavior. Ideally,
all sub-networks have equal aggregated bandwidth (also called

∗: Work done while at Google.

capacity), and TE routes equal volumes of traffic through
each sub-network. Therefore, a faulty control plane partition
in one sub-network does not affect more traffic than the
same fault in another sub-network. However, generating a
set of equal-capacity sub-networks proves difficult due to
topological asymmetry. Namely, the number of links is not a
multiple of the desired number of sub-networks. With unequal
partitioning, sub-networks with lower capacity have to support
the same traffic volume at the cost of higher link utilization.
If TE adjusts the traffic load on each sub-network based on
their respective capacity, the load can be balanced, but certain
sub-networks will have to serve more traffic than others. This
is non-ideal since more traffic will be impacted when these
particular sub-networks experience control plane faults.

DCN operators seek to avoid unequal partitioning by enforc-
ing constraints in topology design, such as ensuring that each
switch connects to all peer switches with equal link count.
With the trend towards spine-free DCNs [8], [12]–[15], this
technique faces challenges as it is increasingly difficult to
achieve equal partitioning.

How can we partition the network equally such that each
control plane partition causes minimal impact while maintain-
ing TE performance close to optimal? In this paper, we pro-
pose virtual slicing, an effective control plane partition scheme
that meets this goal. The idea of virtual slicing is simple:
unlike physical sharding, where a whole link is assigned to a
control plane partition, virtual slicing slices a link into several
“virtual” links and exclusively assigns each virtual link to a
control plane instance. In essence, each control plane partition
in virtual slicing sees the same complete network topology but
at a fraction of the total capacity, hence effectively managing
a partition of the network. Isolation of the virtual links is
achieved by dedicating a portion of the switch memory to each
control plane partition. Each control plane partition installs
switch rules in its dedicated switch memory region to control
how traffic enters the virtual links it manages.

Virtual slicing offers three benefits compared to physical
sharding. First, it does not suffer from unequal partitioning,
as it is trivial to slice links equally into the desired number of
virtual links with equal capacity. The constraints in topology
design mandated by physical sharding are hence unnecessary.
Second, virtual slicing is flexible in creating an arbitrary
number of partitions, whereas in physical sharding, each sub-
topology gets increasingly sparse as the number of aggregation
blocks and/or partitions increase. Third, virtual slicing can979-8-3503-5171-2/24/$31.00 ©2024 IEEE

Spine block

Cluster B Cluster C

Spine block

Cluster A Cluster B
Spine-full architecture Spine-free architecture

Cluster C

Aggregation
Block

Same-color links are visible
and managed by the same
control plane partition.

Cluster A

ToR switch
Core switch
Host machines

Spine Layer

Figure 1: Spine-full and spine-free DCN topologies.

make use of more available capacity in case of controller
failures. With physical sharding, a failed controller leaves links
in its partition unmanaged. Traffic has to be routed around this
partition (and through other partitions) to avoid being dropped
or mishandled. This leads to load imbalance because links
in the failed partition are idle while links in other healthy
partitions are oversubscribed. On the other hand, links in
virtual slicing are shared by multiple partitions. Therefore, to
avoid a failed partition, traffic only needs to follow a different
set of switch rules installed by another controller, but does not
have to completely avoid the links.

We evaluate virtual slicing both in production DCNs and
in a simulator using a wide range of network topologies and
traffic patterns. Results show that virtual slicing achieves up
to 28.4% better performance in tail link utilization when com-
pared with physical sharding in a large-scale spine-free DCN
with unequal partitioning. Virtual slicing also outperforms
physical sharding in application-level performance, improving
tail flow completion times by up to 36%.

In summary, this paper makes the following contributions:
• We identify the mismatch and challenges of applying

the state-of-the-art control plane partition scheme (i.e.,
physical sharding) to the emerging spine-free DCNs.

• We design and implement a novel control plane partition
paradigm, virtual slicing, to address the TE performance
penalty due to unequal partitioning.

• We conduct experiments using both synthetic and real-
world spine-free DCNs and traffic traces; demonstrating
that virtual slicing addresses the identified challenges and
improves over the current approach (physical sharding).

II. BACKGROUND

A. Spine-free DCNs

At cloud scale, multi-stage Clos (or spine-full) net-
works [16]–[19], face challenges such as high spine layer
cost and power consumption, where the spine layer represents
30% capex and 41% power consumption [8]. Multi-stage
Clos topologies also face challenges of hindered hardware
upgrade speed, where switches in the spine layer need to
be upgraded ahead of the switches in aggregation blocks in
order to evolve to higher network speed. As an alternative,
researchers and cloud providers are exploring flat, spine-free
DCN architectures [8], [12]–[15] that enjoy properties such

as reduced construction cost and faster hardware upgrade
cycles. Figure 1 shows a side-by-side comparison of the two
topologies. In both topologies, the clusters are still based on
non-blocking Clos networks: aggregation blocks consist of 2-
tier Clos, and each ToR switch connects to all the core switches
in the aggregation block. In spine-free DCNs, aggregation
blocks form a full mesh instead of connecting to the spine
blocks.

B. Centralized TE in DCNs

To optimize link bandwidth usage and prevent congestion,
data centers employ traffic engineering (TE) to route traffic
through a set of routes chosen by a TE algorithm. In SDN-
managed DCNs, a centralized controller implements TE by
solving a multi-commodity flow problem using linear pro-
gramming. The primary objective used by most TE systems
is to minimize maximum link utilization (MLU) [20]–[22],
which is closely tied to application performance [20], [23],
[24]. The output of TE is a set of weighted cost multipath
(WCMP) [5], [25] weights that determine traffic splitting ratios
across multiple paths. Spine-full topologies utilize 2 block-
level hops through the spine layer [18] for TE and routing,
while spine-free topologies use both direct 1-hop and transit
2-hop paths [8]. This block-level view of the topology also
naturally divides the control plane into inter-cluster routing
controllers and intra-cluster routing controllers, where inter-
cluster controllers solve block-level TE, and the intra-cluster
controllers translate WCMP weights generated by TE into
switch table rules inside each cluster [5], [25].

The output of TE is implemented in switches with a
combination of flow table and group table rules. When a packet
arrives at a switch, longest prefix match (LPM) is performed
against a flow table containing TCAM entries that implement
IP prefix matching rules. The most specific matching rule
is selected, pointing to a group in the SRAM-based group
table, which contains the group actions for ECMP or WCMP.
WCMP weights are represented by replicating group table
entries to match each path’s weight. This mechanism is further
elaborated in Section IV-B and Figure 5.

C. Control plane sharding for high availability

High availability is a crucial design goal in data center
networks hosting critical applications and services, as network
availability directly impacts application performance, business
reputation, and revenue [26], [27]. To achieve this, modern
SDN-managed DCNs employ a control plane partitioning
strategy we refer to as physical sharding. This involves di-
viding the control plane into multiple independent partitions,
each responsible for a disjoint subset of physical links in the
network. The combination of a controller partition and its
exclusive sub-topology is referred to as a shard. Each cluster
and its intra-block links naturally map to an independent shard
per cluster, while the inter-block control plane is divided
into multiple shards. Each inter-block shard instantiates its
own TE pipeline, solving TE and routing traffic within its
exclusive sub-topology. This ensures that controller faults in

one partition only impact a portion of the total traffic carried
by the DCN, minimizing the fault’s scope and impact.

Figure 1 shows how physical sharding is applied to spine-
full and spine-free topologies respectively. The color of a
link indicates the shard to which it is assigned. In spine-
full topologies, aggregation block uplinks are split directly to
different shards, with all links connected to a non-blocking
spine layer. In contrast, spine-free topologies require clusters
to distribute aggregation block uplinks among other peer clus-
ters, creating a sparser full mesh with fewer links between each
aggregation block pair. The following section will illustrate
how the inherent sparsity of spine-free architectures leads to
performance issues when implementing physical sharding.

In addition to control plane partitioning, SDN-managed
DCNs also employ controller replication techniques to ensure
availability. Control plane partitioning contains the impact
of corrupted or faulty control plane partitions on traffic for-
warding; while controller replication, such as main-follower
architectures, ensures high availability within each partition.
Control plane partitioning is usually applied first, followed by
replication of each shard’s controller partition to achieve high
availability. This paper focuses on control plane partitioning
and its interactions with TE.

III. CHALLENGES

Applying the straightforward sharding scheme above to
spine-free topologies, which might be an operator’s natural
inclination, leads to TE performance penalties, as we will dis-
cuss in this section. Under physical sharding, TE performance
penalties stem from the asymmetry of sub-topologies overseen
by different control plane partitions. Unequal partitioning
forces sub-topologies with lower capacity to handle the same
traffic volume, leading to higher link utilization. As we show
next, sub-topology asymmetry leads to several challenges,
including inefficient use of the built network capacity and sub-
optimal TE solutions. Sub-topology asymmetry is caused by
a combination of the following factors:
Limited block radix and large fabric size: The number
of uplinks in an aggregation block is called the radix of the
aggregation block, where the uplinks are used to connect to
other blocks in a spine-free DCN. To ensure efficient use
of network resources and business capital expenditure, each
block has a limited radix (e.g., 256 or 512). When there are
a large number of aggregation blocks in a spine-free DCN,
links are spread sparsely and there is a limited number of
links between block pairs. Partitioning such an already sparse
network leads to asymmetric sub-topologies across physical
shards. If each aggregation block has a radix r, and the total
number of blocks in the network is b, each aggregation block
pair will have ⌊r/b⌋ links. The number of pairwise connections
between blocks decreases as b increases, since r is fixed for
each block regardless of the number of blocks in the network.
Increased number of physical shards: As more physical
shards are added to further contain the impact of control plane
failures, it becomes gradually harder to split the network into
identical sub-topologies due to the increased sparsity.

A B C

Path AàBàC: 300 Gbps
: 100G links

(a) An un-sharded network can fully utilize all the
constructed capacity along path A→B→C.

: 100G links

Path AàBàC: 100 Gbps
Path AàBàC: 100 Gbps

A B C

(100 + 100) / 300
= 66.67% capacity usage

(b) A sharded network with two partitions only
utilizes 2

3
of the constructed capacity along path

A→B→C.

Figure 2: Physical sharding leads to loss in usable capacity.

Link or switch failures: In production DCNs, link, port and
switch failures are not uncommon [28]. They are either due to
scheduled maintenance or unexpected faults. Topology is more
irregular when failures occur, and ensuring topology symmetry
across physical shards becomes increasingly challenging. The
combination of these factors results in sparse and asymmetric
sub-topologies, which lead to the performance penalties as
described below.

A. Transit path capacity loss

In Section II-B we showed that spine-free topologies rely
on non-shortest, 2-hop transit paths for routing. However,
as we show next, spine-free networks suffer from what we
refer to as transit capacity loss, where transit paths hold
insufficient usable capacity when physical sharding is applied,
especially at scale and when the number of control plane
shards increases.

As an illustrative example, Figure 2 demonstrates a transit
path A→B→C, that might potentially suffer from asymmetric
performance penalties. In Figure 2a, path A→B→C utilizes all
300 Gbps of bandwidth; however, in Figure 2b since different
shards have disjoint sub-topologies that are asymmetric, the
blue shard is bottlenecked on A→B, while the orange shard is
bottlenecked at B→C. This results in only a 66.67% utilization
in the built network capacity along A→B→C. This limits the
usable capacity each shard’s TE solver can utilize, causing
unnecessary network capacity wastage.

As shown in this example, transit path capacity loss arises
due to topology asymmetry across physical shards. To quantify
the impact of the capacity loss of transit paths in spine-free
DCNs due to physical sharding, we introduce the fragmenta-

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Fragmentation Loss

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

32 aggr. blocks
48 aggr. blocks
64 aggr. blocks
80 aggr. blocks
96 aggr. blocks

Figure 3: Capacity fragmentation loss as topology scales.

tion loss metric, which measures the degree of underutilization
of capacity due to physical sharding:

Fragmentation Loss = 1− Usable Capacity
Built Capacity

(1)

where built capacity refers to the total capacity of the network
without sharding. Fragmentation loss increases as the usable
capacity decreases, which captures the increased sparsity and
asymmetry discussed in Section III.

We then analyzed how fragmentation loss changes under
different number of aggregation blocks in the spine-free DCN.
To do so, we created synthetic spine-free DCN topologies
with various sizes that follow radix and operational constraints
identical to our deployed fabric topologies. The generated
topologies have 50% of blocks with a radix of 256 and
50% with a radix of 512. Figure 3 shows the fragmentation
loss of topologies of different sizes. We can observe a trend
where fragmentation loss worsens as the fabric size increases.
At 96-block scale, 20% block pairs lose more than 19%
transit capacity. Note that topologies analyzed in Figure 3 do
not include link failures, which would further worsen transit
capacity loss.

B. Suboptimal traffic engineering performance

Physical sharding aims to partition the network into N
identical sub-topologies, with each shard carrying an equal
amount of traffic to contain failures. However, generating
identical sub-topologies in spine-free DCNs is challenging, as
we’ve demonstrated in previous sections. When the topology
is unequally partitioned, each shard’s controller solves a TE
problem based on its local topology, generating a solution that
is locally optimal but globally suboptimal.

Figure 4 demonstrates an unsharded topology and two corre-
sponding partitioned topologies with physical sharding using 2
shards. A single traffic demand exists from block A to block C,
and each link has a 100 Gbps capacity. The traffic engineering
objective is to minimize maximum link utilization (MLU).
The numbers along the edges show the optimal traffic split
that minimizes MLU. When TE is applied on the unsharded
topology, the optimal MLU is 60%. However, splitting the
network into two nearly equal physical shards, each handling
half the traffic, increases the MLU to 75% on shard B.

A

B

D

C

75

75A

B

D

C

50

50

50

A

B

D

C

120

120

60
Demands:
A⟷C: 300 Gbps

Shard 2Shard 1UnshardedSharding Scheme
/ Path

N/A50%60%AàC

75%50%60%A àBàC

75%50%60%AàDàC

Shard 1 Shard 2

Figure 4: Unequal partitioning in physical sharding leads
to sub-optimal TE performance. Table entries show the link
utilization along a certain path.

IV. VIRTUAL SLICING

The challenges identified in Section III collectively make
physical sharding inherently incompatible with spine-free
DCNs. In order to overcome these challenges, we propose
virtual slicing, an effective control plane partitioning scheme.
Unlike physical partitioning that divides the physical network
into sub-topologies, virtual slicing maintains a unified topol-
ogy, therefore avoiding traffic engineering performance penal-
ties while providing equivalent failure containment assurances
as physical sharding.

A. Concept

The fundamental concept behind virtual slicing is to parti-
tion switch table resources, specifically flow tables and group
tables, rather than topologically partitioning network links.
Each virtual slice is controlled by an independent control plane
partition, while all virtual slices share the entire (thus identi-
cal) physical topology that contains all links when performing
TE. Each virtual slice takes this identical topology along with
traffic demand as input, and generates its set of WCMP [5],
[25] weights to split traffic among multiple block-level paths.
Each virtual slice then transforms the generated paths and their
weights into flows and groups and programs them into switch
tables. By operating on identical, global traffic information
and topology inputs across all virtual slices, virtual slicing (1)
eliminates the effects of transit path capacity loss and topology
asymmetry across shards; and (2) computes a globally-optimal
TE solution.

In addition to enhancing performance, control plane failures
within each virtual slice only affect traffic routed by that par-
ticular slice, achieving similar effect as the isolation provided
by physical sharding. With N virtual slices, each controller
partition manages 1/N of the total traffic volume, confining
the impact of a controller failure to the corresponding virtual
slice. Failure containment can be further tightened by increas-
ing the number of slices. In contrast, adding more physical
shards in spine-free DCNs is challenging because doing so

X
Y

Virtual slice 1

Dst. cluster reachable
via label A

Virtual slice 2

Dst. cluster reachable
via label B

Sr
c.

 C
lu

st
er

Ds
t.

Cl
us

te
r

(a)

of
Entries

Group
table
Index

IP prefix

4010.1.1.0/24

………

Flow table

Output
Port

Insert
Label

Index

1A0

1B1

2A2

2B3

……

Group table

Actions: insert a switching label
and send to an output port

Hash
&

mod

Destination IP of
incoming packet

X

Y X

Y

5-tuple of the
incoming packet

(b)

Figure 5: Virtual slicing realization with label switching and flow/group tables. (a) Which virtual slice a packet lands on is
determined at ToR switches. Dashed lines are controller sessions. (b) The source ToR’s group table is populated with one entry
per virtual slice per output port, achieving equal traffic split between virtual slices.

will further worsen transit path capacity loss and asymmetry
across physical shards.

Furthermore, with physical sharding across N shards, data
centers risk losing up to 1/N of the fabric capacity when
a controller partition fails, as the affected physical shard’s
capacity becomes unusable. Migrating traffic away from a
faulty physical shard is infeasible because other controllers
don’t have visibility and control over the physical network
owned by another partition. In contrast, virtual slicing enables
traffic migration across virtual slices (Section IV-B), ensuring
no physical network capacity remains unutilized during con-
troller failures.

B. Routing design

Routing in virtual slicing can be realized with classic
techniques such as label switching and IP-in-IP tunneling. We
elaborate on the use of label switching, though this approach
can also leverage IP-in-IP tunneling. Using either technique,
packets are tagged upon entering the network to indicate their
associated virtual slice. With label switching, each packet is
assigned a switching label at the source top-of-rack (ToR)
switch and forwarded based on this label until it reaches the
destination cluster. There, the packet is eventually forwarded
to its destination host via standard IP forwarding based on the
destination IP field.

Figure 5 illustrates how a packet is mapped to a specific
virtual slice in its source cluster. In the source ToR switch’s
packet processing pipeline [25], a hash value is first computed
based on the packet header’s various fields. The pipeline
then references the flow table and the computed hash value
to identify the corresponding table entry (i.e., actions) in
the group table for the packet, as shown in Figure 5b. In
this example, packets have an equal probability of being
assigned to switching label A or B (thus virtual slice 1 and
2). Flows assigned the same switching label can be sent to
port 1 or port 2 with equal probability. Packets of the same

flow receive the same deterministic routing decision, landing
on the same virtual slice and avoiding packet reordering.
Intermediate switches in the aggregation block perform label
switching, where traffic from a specific virtual slice destined
for a cluster is directed through the network by looking up the
assigned forwarding label. Ingress switches of the destination
aggregation block ultimately pop the forwarding label and use
the inner packet header’s destination IP address to route the
packets to the correct host.

Figure 5b shows flows from a ToR switch mapped to
different virtual slices with equal probability, ensuring each
slice handles an equal amount of traffic. Virtual slicing can
further achieve weighted traffic splitting across slices by
adjusting group table weights via WCMP’s entry replication
[5], [25]. For instance, doubling the entries that insert label
A in Figure 5 results in a 2:1 traffic split between slices
1 and 2. Flexible traffic splitting only requires group table
configuration at edge ToR switches, without reprogramming
downstream switches. With the usage of group tables, virtual
slicing’s routing design also enables dynamic traffic migration
that allows seamless steering of traffic from faulty to healthy
virtual slices. Upon detecting an unhealthy slice, virtual slicing
removes the group table entries pointing to the unhealthy slice,
migrating all traffic to healthy slices. In the example shown
in Figure 5, if the controller in virtual slice 2 is faulty, by
removing group table entries pointing to forwarding label B
(used by virtual slice 2 for the destination cluster), all traffic
would then migrate to virtual slice 1 (using forwarding label A
for the same destination), without requiring flow table changes.
This process occurs in parallel on ToR switches, which ensures
consistent network updates. Dynamic traffic migration ensures
no physical network capacity remains unutilized when a virtual
slice controller is faulty, unlike physical sharding, where up to
1/N of physical capacity is lost with N topology partitions.

C. Switch table usage analysis

We now examine the table resource utilization of virtual
slicing in modern commodity switches.
Flow table and label space usage. Each cluster is assigned
M forwarding labels for an implementation of virtual slicing
with M virtual slices, where each virtual slice is assigned a
globally unique label, and the total number of labels required
is M multiplied by the number of clusters within the fabric.
Considering a maximum practical case of 32 virtual slices in
a 96-cluster spine-free fabric, a total of 96∗32 = 3072 unique
labels required falls well within the capabilities of modern
switches [29]–[31]. On the other hand, in a DCN with 96
clusters, there would be 96 prefixes at each ToR for block-level
routing (Figure 5b), requiring 96 entries. Thus, virtual slicing’s
utilization of both unique labels and flow table entries remains
well within the capabilities of contemporary switch hardware.
Group table usage. Group tables are the foundation for im-

plementing WCMP. WCMP is usually achieved by replicating
ECMP entries in the group table, where the group table’s
utilization depends on the WCMP reduction algorithm—such
an algorithm tries to reduce the number of duplicated entries
for efficient table space usage [5], [25], [32]. The design
of virtual slicing indicates that the number of entries each
slice can utilize is inversely proportional to the total number
of slices, i.e., M

#slices . Group table will be under pressure
of running out as the number of virtual slices increases.
Fortunately, the controllers in each virtual slice often operate
on the same topology and traffic input, which results in almost
identical WCMP group weights across slices. Switch resource
optimization techniques such as group sharing1 proposed in
[5] could help in such scenario. In addition, switch vendors
start to support native WCMP weight split techniques in
hardware without any ECMP entry replication, e.g., Broadcom
Tomahawk4 supports 4,096 WCMP groups with native WCMP
weights [31]. New switch hardware with this capability also
helps address the resource challenge.

V. EVALUATION

In this section, we study the following issues to understand
the performance benefits and system characteristics of virtual
slicing from different perspectives, and also investigate its
practical impact on spine-free DCNs: Q1. What is virtual
slicing’s TE improvement with diverse fabric topologies (e.g.,
different fabric scales) and traffic patterns (e.g., traffic bursts
and real-world traces)? Q2. What is virtual slicing’s TE im-
provement with more number of slices? Q3. Is virtual slicing’s
performance gain sensitive to traffic measurement delays? Q4.
What is virtual slicing’s TE improvement under impaired
network topologies due to maintenance or unexpected failures?
Q5. What is virtual slicing’s impact on application perfor-
mance? Q6. How does virtual slicing affect TE solving time?

1Group sharing enables identical groups to share the same table
space/entries.

Exp. group Fabric characteristics Traffic characteristics

Synthetic
(Section V-B)

Synthesized following
block radix constraints.

Synthesized via models
that simulate realistic
scenarios.

Semi-
production
(Section V-C)

Synthesized with a
topology builder used to
design and validate
topologies to be deployed.

Same as above.

Production
(Section V-C)

Fabrics deployed in
production.

Direct traffic collection
in production fabrics.

ns-3 [33]
(Section V-D)

Synthesized following
block radix constraints.

Flows generated via
distributions derived
from production traces.

Table I: Experiment group configurations.

A. Experiment setup

Implementation. We implemented a virtual slicing and phys-
ical sharding evaluation framework modeling a datacenter TE
system. The evaluation framework takes topology information
and traffic matrix as input, computes TE solutions in the form
of block-level path weights and outputs link utilizations. In the
physical sharding scheme, direct links between an aggregation
block pair are divided, as equally as possible, into k partitions
to ensure equal or close to equal network capacities across
shards; each physical shard carries 1

k traffic. For virtual slicing,
we employ k virtual slices, where each slice also carries 1

k
traffic. We focus on evaluating aggregation block-level link
utilization, which is the primary optimization target for TE in
spine-free DCNs due to their blocking nature (Section V-B,
Section V-C). In addition to TE-related network-level metrics,
we also evaluate application-facing metrics with ns-3 [33], a
packet-level network simulator (Section V-D).
TE pathing and formulation. The TE system’s pathing
module allows direct 1-hop and transit 2-hop block-level paths
for routing, and employs the widely adapted objective of
minimizing the maximum link utilization (MLU) [20]–[22].
TE is then formulated as a multi-commodity flow (MCF)
problem [34] and solved by linear programming (Section II-B).
Topologies and traffic traces. We evaluated virtual slicing’s
performance using synthetic topologies and traces, as well as
production spine-free topologies with real-word traces. Table I
summarizes the experimental setups used in our evaluation.
Specifically, we evaluated (1) synthetic topologies follow-
ing block radix limitations, (2) topologies generated with a
production spine-free topology builder that follow additional
operational constraints, and (3) deployed production spine-
free topologies. The radix of an aggregation block in these
topologies is either 256 or 512.

Parameters for synthesized traffic patterns are chosen to
simulate realistic scenarios, and don’t represent actual direct
production measurements. Our first traffic matrix (TM) follows
the gravity model [35], where each aggregation block has
a total demand around 40% of its total bandwidth, aiming
to represent medium to high traffic load scenarios in data
centers. The gravity model states that the amount of traffic
between two clusters is proportional to the product of the
two cluster’s total ingress/egress volume. The second TM
is a “gravity+spikes” TM, where random traffic spikes are
added on top of the gravity TM to model the burstiness of

Figure 6: TE improvement w/ more slices/shards. Figure 7: TE improvement w/ different traffic patterns.

DCN traffic [36], [37]. Specifically, with a 15% probability,
we increase the volume of a commodity (i.e. traffic demand
between a source and destination aggregation block pair) by
50%. We also generated an uniform TM, which has an equal
amount of ingress and egress demand that’s evenly distributed
across all aggregation blocks. Besides synthetic traffic, we also
evaluate virtual slicing on traffic collected from production
DCN fabrics (Section V-C). Unless otherwise specified, the
topologies in evaluation use 4 physical shards/virtual slices. To
ensure a fair comparison, the number of physical shards and
virtual slices used within each experiment remains constant
throughout the evaluation.

B. TE with different traffic patterns and slices

Different number of slices. We first evaluate virtual
slicing’s TE performance under different number of slices
by looking at link utilizations at different median and tail
percentiles, using the gravity+spikes TM, under a 64-block
topology. Figure 6 shows that virtual slicing’s link utiliza-
tion on different percentiles improves over physical sharding,
where the level of improvement increases along with the
increase in virtual slices/physical shards. When 8 slices/shards
are used, virtual slicing improves P99/max link utilization
by 13.5%/11.6%. Note that virtual slicing improves not only
MLU—the optimization objective of the TE algorithm, but
also the utilization of links at other percentiles, particularly
at the tail. Though these percentiles were not the target of
optimization, virtual slicing’s elimination of asymmetry and
capacity fragmentation effectively increases the usable capac-
ity within the network, and consequently, improves overall
utilization. These results confirms our expectations, as the
increase in number of slices exacerbates topology asymmetry,
which then impacts TE performance (Section III).
Different traffic patterns. Figure 7 shows virtual slicing’s
link utilization improvement for the same 64-block topology
over different types of traffic. Virtual slicing improves tail link
utilization for all types of traffic, with a 13.6%/9.7% P99/max
link utilization improvement under the gravity+spikes TM. Tail
link utilization improvement is especially noticeable under the
gravity+spikes TM, likely due to physical sharding results in
sub-topologies with transit capacity loss (Section III), thus
having less capacity to accommodate traffic bursts.

These improvements collectively indicate that virtual slicing
load balances traffic more efficiently than physical sharding,

due to virtual slicing taking global traffic as input and comput-
ing a globally optimal TE solution, as well as the elimination
of asymmetry and capacity fragmentation (Section III). Im-
proving overall and tail link utilization distribution in DCNs is
crucial to fabric efficiency and application-level performance,
as studies have shown that higher utilization worsens packet
loss rate and application latency [24], [38].

C. Production topologies and traffic

We now study how virtual slicing works with realistic
spine-free topologies and traffic. For this part of the evaluation,
we generated several topologies of various sizes with our pro-
duction topology builder for realisticness. We also arbitrarily
chose, from our fleet, a deployed medium-size and a large-size
example fabric for analysis.
Fabric scale. We generated spine-free topologies with 48,
64 and 72 aggregation blocks with the production topology
builder to understand the impact of fabric scale on virtual
slicing’s performance. Figure 8 shows the link utilization
across synthetic topologies under the gravity+spikes TM.
Virtual slicing improves tail link utilization, and greatly re-
duces overall link load in the network. For instance, the 70th
percentile link utilization is improved by 3.8% (Figure 8a),
11.8% (Figure 8b), and 25.4% (Figure 8c) for each respective
fabric. The average utilization improvement for percentiles
from the 50th to the 100th is 3.8%, 16.8% and 13.9% in these
fabrics. The TE performance gains of virtual slicing are much
more prominent as the fabric size increases (Figures 8b and 8c)
because sub-topologies across shards are more asymmetric as
fabric size increases in physical sharding. In Figure 8, it can
be observed that virtual slicing exhibits higher utilization in
the lower percentiles. This is expected, as the objective of
traffic engineering is to minimize maximum link utilization
by distributing traffic loads more uniformly across links. As
discussed in Section III, virtual slicing eliminates fragmen-
tation loss and generates globally optimal traffic engineering
decisions, thereby redistributing traffic from more congested
links to less congested ones, resulting in a more balanced
utilization.
Deployed topologies. Figure 9 demonstrates each deployed
production fabric’s link utilization of different percentiles with
2 hours of realistic traffic traces. Traffic is collected and aggre-

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Link Utilization

0.0

0.2

0.4

0.6

0.8

1.0
CD

F
Physical Sharding
Virtual Slicing

(a) Fabric 1 (48 Blocks)

0.0 0.2 0.4 0.6 0.8
Link Utilization

0.2

0.4

0.6

0.8

1.0

CD
F

Physical Sharding
Virtual Slicing

(b) Fabric 2 (64 Blocks)

0.0 0.2 0.4 0.6 0.8 1.0
Link Utilization

0.2

0.4

0.6

0.8

1.0

CD
F

Physical Sharding
Virtual Slicing

(c) Fabric 3 (72 Blocks)

Figure 8: TE performance improvement as fabric scales.

0 5 10 15 20
Timestamp

10

5

0

5

10

15

20

25

30

Im
pr

ov
em

en
t (

%
)

50th percentile
75th percentile
90th percentile
95th percentile
100th percentile

(a) Medium production fabric

0 5 10 15 20
Timestamp

10

5

0

5

10

15

20

25

30

Im
pr

ov
em

en
t (

%
)

50th percentile
75th percentile
90th percentile
95th percentile
100th percentile

(b) Large production fabric

Figure 9: Real-time TE improvement.

gated every 5 minutes2. Similar to the results with synthetic
traffic, we observe improvements in link utilization across
different percentiles, as well as notable tail improvement
across all fabrics: the medium fabric has an average of 12.5%,
and up to 16.8% link utilization improvement for the 75th
percentile; as well as an average of 9.7%, and up to 10.6% max
link utilization improvement. The large fabric’s corresponding
performance improvement numbers are even better (up to
20.9% link utilization improvement for the 75th percentile;
and up to 28.4% link utilization improvement for MLU). These

2Note that these traces were collected from arbitrary chosen time intervals
and fabrics, therefore our experiments do not imply a generalized result.

0 5 10 15 20
Timestamp

10

5

0

5

10

15

20

25

Im
pr

ov
em

en
t (

%
)

50th percentile
75th percentile
90th percentile
95th percentile
100th percentile

(a) Medium production fabric

0 5 10 15 20
Timestamp

10

5

0

5

10

15

20

25

Im
pr

ov
em

en
t (

%
)

50th percentile
75th percentile
90th percentile
95th percentile
100th percentile

(b) Large production fabric

Figure 10: TE improvement under delayed measurements.

results collectively show that the TE improvements of virtual
slicing hold, especially at the tail, for realistic topologies and
traces as well, where traffic is more bursty, unpredictable and
skewed. 3

TE performance with traffic measurement delays. All
previous experiments studied a real-time TE setting, where
traffic input to the TE solver was identical to the input used for
performance evaluation. Real-time TE reflects the optimal TE

3Note that since the objective of our TE system is to minimize maximum
link utilization (Section V-A), it is expected that lower-percentile link utiliza-
tions, which are not the target of optimization, sometimes do not improve.

50 75 90 95 99 100
Percentile Utilization

0

5

10

15

20

25

30

35

40

Im
pr

ov
em

en
t (

%
)

Real-time TE, Capacity Impaired
Real-time TE, Full Capacity

(a) Real-time, med. fabric

50 75 90 95 99 100
Percentile Utilization

0

5

10

15

20

25

30

35

40

Im
pr

ov
em

en
t (

%
)

Real-time TE, Capacity Impaired
Real-time TE, Full Capacity

(b) Real-time, large fabric

50 75 90 95 99 100
Percentile Utilization

0

5

10

15

20

25

30

35

40

Im
pr

ov
em

en
t (

%
)

Non-real-time TE, Capacity Impaired
Non-real-time TE, Full Capacity

(c) Delayed, med. fabric

50 75 90 95 99 100
Percentile Utilization

0

5

10

15

20

25

30

35

40

Im
pr

ov
em

en
t (

%
)

Non-real-time TE, Capacity Impaired
Non-real-time TE, Full Capacity

(d) Delayed, large fabric

Figure 11: TE improvement of virtual slicing under capacity impairments.

solution where traffic measurement delay is omitted, allowing
us to better understand the fundamental performance differ-
ence between virtual slicing and physical sharding. However,
even if the traffic matrix can be measured in real-time, it
would be difficult to program the TE solution in real-time,
especially in large-scale networks. Therefore, we also study
the performance of virtual slicing for non-real-time TE, where
the traffic input to TE solver is based on delayed traffic data.
We use the traffic matrix from the past 5 minutes to compute
the TE solution, which is then evaluated based on the current
traffic matrix.

Figure 10 shows the link utilization percentile improvements
of virtual slicing under non-real-time TE. Similar to real-time
TE, all fabrics have constant improvement on high percentiles.
In particular, both the medium and large fabrics have an
averaged 10% improvement for all percentiles 75th and higher.
The two fabrics show a MLU improvement of 23.9% and
17.8% across timestamps, respectively. These results show that
virtual slicing retains its TE benefits even when facing realistic
delayed traffic measurements.
TE performance with capacity impairments. To study
virtual slicing’s performance under capacity impairments due
to scheduled maintenance operations (e.g., switch drains)
or unexpected failures (e.g., rack failures), we introduce a
scenario where 25% of a randomly chosen aggregation block’s
links are taken offline. We analyze the TE improvement results
under both real-time TE and delayed TE setups.

Figure 11a and Figure 11b demonstrate that with virtual
slicing, under real-time TE, both fabrics show additional
improvement over physical sharding under large capacity
loss. In particular, compared with physical sharding, virtual
slicing offers 38.4.% and 37.6% MLU improvement, as well
as 38.8% and 31.4% improvement at the 99th percentile
link utilization respectively for the two production fabrics.
Similarly, in the delayed TE scenario shown in Figure 11c
and Figure 11d, virtual slicing improves tail link utilization
significantly: the medium and large fabrics respectively show
37.0% and 29.4% MLU improvement. The gains confirm our
hypothesis described in Section III—capacity loss, whether
caused by scheduled maintenance or unexpected failures,
worsens topology asymmetry, and thus leads to exacerbated
transit path capacity loss, which is the key reason behind
physical sharding’s sub-optimality. On the other hand, virtual

slicing avoids such problems by design and thus provides
much better TE performance.

D. Impact on flow completion time

Previous subsections demonstrated the TE (link utilization)
improvement of virtual slicing under various scenarios. We
now study virtual slicing’s impact on flow completion time
(FCT) under different scenarios. FCT represents the end-to-
end transfer latency of a network flow, which has direct impact
on application performance and user experience, especially
for time-sensitive distributed applications. We constructed our
flow-level traces by sampling flow size CDFs reported by dif-
ferent production networks [36], [39], while ensuring the total
size of the sampled flows matches the demand of the traffic
matrix. We used the gravity+spikes TM (Section V-A) and a
32-block topology for this study. Run-time load balancing is
done at flow-level. TE solutions are programmed following
the routing design in Section IV-B, where WCMP weights are
implemented via entry replication in group tables.

Figure 12 shows the flow completion time at different per-
centiles for both virtual slicing and physical sharding. Virtual
slicing improves P95 FCT by 62.7%, P99 FCT by 45.3%,
and max (P100) FCT by 36.8%. Again, the improvements in
tail FCTs can be attributed to globally optimal TE and the
increase of usable capacity in virtual slicing, which allows
flows to allocate more bandwidth and thus reducing their time
to completion. Compared to the link utilization studies in
Section V-B and Section V-C, we observe more substantial
improvements in tail FCT performance with virtual slicing. We
attribute this enhancement to challenges associated with imper-
fect load balancing. To elaborate, load balancing operates at
the flow level; therefore, the actual load distributed across each
path equates to the cumulative sizes of flows routed through
that path, which can diverge from the intended traffic split
calculated by the TE system. Such discrepancy intensifies the
issue of suboptimal traffic engineering in physical sharding
caused by unequal split of traffic and topology (Section III-B).
This, in turn, leads to further FCT degradation in physical
sharding.

E. TE solving time microbenchmarks

TE is solved by linear programming for both virtual slicing
and physical sharding, where the solving time is primarily
affected by topology size. Although the topology input to

Figure 12: Flow completion times.

Virtual Slicing Physical Sharding
Solver Type

50

100

150

200

250

So
lv

in
g

Ti
m

e
(s

)

Medium Fabric
Large Fabric

Figure 13: TE solving time benchmark.

the solver has the same number of nodes (i.e., aggregation
blocks) in both physical sharding and virtual slicing, the input
to physical sharding has less edges (i.e., block-level paths),
especially when the topology increases in size, since each
physical shard’s topology gets sparser with scale. Therefore
we expect virtual slicing’s TE solving time to be larger than
physical sharding, as fabrics scale. To study this, we bench-
marked TE solver time for both virtual slicing and physical
sharding on a medium and large production fabric. As shown
in Figure 13, the median TE solving time is 85/131 seconds
for the medium fabric, and 79/193 seconds for the large fabric
using physical sharding and virtual slicing, respectively. Since
TE solutions in deployed DCNs are reprogrammed at O(10s
of minutes) timescale, the TE solution is reprogrammed at a
timescale much longer than the solving time, staying within
acceptable bounds.

VI. RELATED WORK

Spine-free DCNs Several works [12], [40], [41] have been
proposed to directly connect ToRs as a spine-free network
to overcome the shortcomings of Clos-based hierarchical net-
works. However, expander-based solutions face deployment
challenges. For instance, Jellyfish [40] and Xpander [41]
require MPTCP [42] over shortest-K paths, while Kassing
et al. [43] suggest using ECMP-VLB hybrid routing with
flowlet switching, which is only available on select hardware
platforms. DRing [12] proposes a more practical routing
design but it only scales to small to medium-sized data cen-
ters. Alternatively, other works [13], [14], [44], [45] suggest
connecting ToRs to an optical circuit switching (OCS) layer,
leveraging the high reconfigurability and bandwidth of OCSes

to provide a reconfigurable flat network. Recently, a large-scale
cloud provider has started exploring and adapting a SDN-
managed spine-free DCN architecture that directly connects
aggregation blocks via MEMS-based OCSes [8], [24], [46].
Our paper focuses on the control plane sharding design for
SDN-managed spine-free DCNs where aggregation blocks are
connected by an OCS interconnect layer.
TE in WANs and DCNs TE is a well-established technique
for enhancing wide-area network (WAN) reliability and ef-
ficiency [22], [47]–[51]. Previous studies [4], [8], [24] have
also demonstrated the advantages of implementing TE in
data centers. For example, TE is able to accomodate more
traffic in a spine-free DCN by carefully load balancing traffic
demands on multiple paths. TE is often formulated as a multi-
commodity flow (MCF) problem [34] and when fractional flow
is allowed, MCF problems can be solved in polynomial time
through linear programming (LP). In SDN-managed DCNs,
TE solutions are first solved in a SDN controller, then the
generated TE path splits are translated as WCMP weights and
programmed on the switches. However, to the extent of our
knowledge, no prior work has systematically investigated the
interactions between TE and SDN control plane partitioning
in DCNs. Virtual slicing is one of the first attempts to provide
a highly available control plane and optimized TE solutions
simultaneously.
Network virtualization FlowVisor [52] envisioned an Open-
Flow [53]-based network virtualization layer to slice physical
networks via partitioning flow tables. Virtual routing and
forwarding (VRF) [54] is a technology in routers that allows
multiple instances of a routing table to coexist in a router and
work simultaneously. Virtual slicing shares a similar vision
and shards a network via slicing switch resources (both flow
and group tables) as opposed to partitioning physical links.
Different from prior works, virtual slicing is not only able
to partition a network but also able to provide dynamic traffic
migration capability which is essential for control plane failure
handling. Furthermore, we demonstrate the TE performance
gains of virtual slicing compared with state-of-the-art control
plane partitioning scheme, physical sharding, in spine-free
DCNs using production topologies and traffic traces.

VII. CONCLUSION

Spine-free DCNs have received increasing attention in
both academia and industry in recent years. In this paper,
we show that the state-of-the-art control plane partitioning
scheme, physical sharding, inherently creates mismatches with
spine-free DCN topologies and impacts TE performance. We
propose a novel control plane partitioning approach, virtual
slicing, that contains impact of faulty contollers while ensuring
efficient TE performance. We also propose a concrete routing
design for virtual slicing using standard techniques and ana-
lyze its feasibility. Experiments using realistic topologies and
traffic demonstrate that virtual slicing significantly improves
TE performance in spine-free DCNs, especially under network
failures, while containing the impact of control plane failures.

REFERENCES

[1] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford, “Hula: Scal-
able load balancing using programmable data planes,” in Proceedings
of the Symposium on SDN Research, 2016.

[2] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu,
A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese,
“Conga: distributed congestion-aware load balancing for datacenters,” in
SIGCOMM, 2014.

[3] E. Vanini, R. Pan, M. Alizadeh, P. Taheri, and T. Edsall, “Let it flow:
Resilient asymmetric load balancing with flowlet switching,” in NSDI,
2017.

[4] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: Fine grained
traffic engineering for data centers,” in CoNEXT, 2011.

[5] S. S. Chen, K. He, R. Wang, S. Seshan, and P. Steenkiste, “Precise
data center traffic engineering with constrained hardware resources,” in
NSDI, 2024.

[6] M. Denis, Y. Yao, A. Hatch, Q. Zhang, C. L. Lim, S. Zhang, K. Sugrue,
H. Kwok, M. J. Fernandez, P. Lapukhov, S. Hebbani, G. Nagarajan,
O. Baldonado, L. Gao, and Y. Zhang, “Ebb: Reliable and evolvable
express backbone network in meta,” in SIGCOMM, 2023.

[7] U. Krishnaswamy, R. Singh, N. Bjørner, and H. Raj, “Decentralized
cloud wide-area network traffic engineering with blastshield,” in NSDI,
2022.

[8] L. Poutievski, O. Mashayekhi, J. Ong, A. Singh, M. Tariq, R. Wang,
J. Zhang, V. Beauregard, P. Conner, S. Gribble et al., “Jupiter evolving:
transforming Google’s datacenter network via optical circuit switches
and software-defined networking,” in SIGCOMM, 2022.

[9] C.-Y. Hong, S. Mandal, M. Al-Fares, M. Zhu, R. Alimi, C. Bhagat,
S. Jain, J. Kaimal, S. Liang, K. Mendelev et al., “B4 and after: managing
hierarchy, partitioning, and asymmetry for availability and scale in
google’s software-defined WAN,” in SIGCOMM, 2018.

[10] A. D. Ferguson, S. Gribble, C.-Y. Hong, C. Killian, W. Mohsin,
H. Muehe, J. Ong, L. Poutievski, A. Singh, L. Vicisano, R. Alimi, S. S.
Chen, M. Conley, S. Mandal, K. Nagaraj, K. N. Bollineni, A. Sabaa,
S. Zhang, M. Zhu, and A. Vahdat, “Orion: Google’s software-defined
networking control plane,” in NSDI, 2021.

[11] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, “Onos:
towards an open, distributed sdn os,” in HotSDN, 2014.

[12] V. Harsh, S. A. Jyothi, and P. B. Godfrey, “Spineless data centers,” in
HotNets, 2020.

[13] H. Ballani, P. Costa, R. Behrendt, D. Cletheroe, I. Haller, K. Jozwik,
F. Karinou, S. Lange, K. Shi, B. Thomsen et al., “Sirius: A flat datacenter
network with nanosecond optical switching,” in SIGCOMM, 2020.

[14] W. M. Mellette, R. McGuinness, A. Roy, A. Forencich, G. Papen, A. C.
Snoeren, and G. Porter, “Rotornet: A scalable, low-complexity, optical
datacenter network,” in SIGCOMM, 2017.

[15] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in NSDI, 2020.

[16] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[17] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in SIGCOMM, 2009.

[18] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano et al., “Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network,” in SIGCOMM, 2015.

[19] A. Andreyev, “Introducing data center fabric, the next-generation
Facebook data center network.” https://code.facebook.com/posts/
360346274145943, 2014.

[20] D. Applegate and E. Cohen, “Making intra-domain routing robust to
changing and uncertain traffic demands: Understanding fundamental
tradeoffs,” in SIGCOMM, 2003.

[21] M. Roughan, M. Thorup, and Y. Zhang, “Traffic engineering with
estimated traffic matrices,” in IMC, 2003.

[22] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking the tightrope:
Responsive yet stable traffic engineering,” in SIGCOMM, 2005.

[23] H. Wang, H. Xie, L. Qiu, Y. R. Yang, Y. Zhang, and A. Greenberg,
“Cope: Traffic engineering in dynamic networks,” in SIGCOMM, 2006.

[24] M. Zhang, J. Zhang, R. Wang, R. Govindan, J. C. Mogul, and A. Vahdat,
“Gemini: Practical reconfigurable datacenter networks with topology and
traffic engineering,” arXiv preprint arXiv:2110.08374, 2021.

[25] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “WCMP: Weighted cost multipathing for improved fairness
in data centers,” in EuroSys, 2014.

[26] S. Hogg, “High Expectations of Network Availabil-
ity?” https://www.networkworld.com/article/2235262/
cisco-subnet-high-expectations-of-network-availability.html, 2009.

[27] E. Voit, “Enterprise Network Availability: How to Cal-
culate and Improve?” https://blogs.cisco.com/networking/
enterprise-network-availability-how-to-calculate-and-improve, 2020.

[28] P. Gill, N. Jain, and N. Nagappan, “Understanding network failures in
data centers: measurement, analysis, and implications,” in SIGCOMM,
2011.

[29] Cisco, “Cisco nexus 9000 series nx-os label switching
configuration guide,” https://www.cisco.com/c/en/us/td/docs/
switches/datacenter/nexus9000/sw/7-x/label-switching/configuration/
guide/b Cisco Nexus 9000 Series NX-OS Label Switching
Configuration Guide 7x/b Cisco Nexus 9000 Series NX-OS
MPLS Configuration Guide 7x chapter 011.html#concept
FBC7A3F15CFE4765AAA5E4E9A6CF7F88, 2024.

[30] Broadcom, “Tomahawk3/BCM56980 Series,” https://www.
broadcom.com/products/ethernet-connectivity/switching/strataxgs/
bcm56980-series, 2019.

[31] ——, “Tomahawk4/BCM56990 Series,” https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56990-series,
2019.

[32] Y. Xu, K. He, R. Wang, M. Yu, N. Duffield, H. Wassel, S. Zhang,
L. Poutievski, J. Zhou, and A. Vahdat, “Hashing design in modern
networks: Challenges and mitigation techniques,” in ATC, 2022.

[33] NS-3 Consortium, “ns-3 network simulator,” 2023. [Online]. Available:
https://www.nsnam.org/

[34] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in 16th Annual Symposium on
Foundations of Computer Science (SFCS 1975), 1975.

[35] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accurate
computation of large-scale IP traffic matrices from link loads,” in
SIGMETRICS, 2003.

[36] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in IMC, 2010.

[37] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Computer Communica-
tion Review, 2010.

[38] V. Arun and H. Balakrishnan, “Copa: Practical delay-based congestion
control for the internet,” in NSDI, 2018.

[39] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren, “Inside the
social network’s (datacenter) network,” in SIGCOMM, 2015.

[40] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Network-
ing data centers randomly,” in NSDI, 2012.

[41] A. Valadarsky, G. Shahaf, M. Dinitz, and M. Schapira, “Xpander:
Towards optimal-performance datacenters,” in CoNEXT, 2016.

[42] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp,”
in NSDI, 2011.

[43] S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla, “Be-
yond fat-trees without antennae, mirrors, and disco-balls,” in SIGCOMM,
2017.

[44] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz, V. Subra-
manya, Y. Fainman, G. Papen, and A. Vahdat, “Helios: a hybrid electri-
cal/optical switch architecture for modular data centers,” in SIGCOMM,
2010.

[45] W. M. Mellette, R. Das, Y. Guo, R. McGuinness, A. C. Snoeren, and
G. Porter, “Expanding across time to deliver bandwidth efficiency and
low latency,” in NSDI, 2020.

[46] H. Liu, R. Urata, K. Yasumura, X. Zhou, R. Bannon, J. Berger, P. Dashti,
N. Jouppi, C. Lam, S. Li et al., “Lightwave fabrics: At-scale optical
circuit switching for datacenter and machine learning systems,” in
SIGCOMM, 2023.

[47] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,
“Netscope: Traffic engineering for IP networks,” IEEE Network, 2000.

[48] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” in INFOCOM, 2000.

[49] R. Zhang-Shen and N. McKeown, “Designing a fault-tolerant network
using valiant load-balancing,” in INFOCOM, 2008.

[50] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[51] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined WAN,” in SIGCOMM, 2013.

[52] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. M. Parulkar, “Can the production network be the testbed?”

in OSDI, 2010.
[53] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM computer communication review,
2008.

[54] Cisco, “Virtual Route Forwarding Design Guide,” https:
//www.cisco.com/c/en/us/td/docs/voice ip comm/cucme/vrf/design/
guide/vrfDesignGuide.html, 2008.

